scispace - formally typeset
Search or ask a question
Author

Scott Himmelberger

Bio: Scott Himmelberger is an academic researcher from Stanford University. The author has contributed to research in topics: Polymer solar cell & Organic solar cell. The author has an hindex of 23, co-authored 26 publications receiving 2018 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping.
Abstract: Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.

242 citations

Journal ArticleDOI
TL;DR: The comparison between the regioregular and regioirregular polymers shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).
Abstract: We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes...

221 citations

Journal ArticleDOI
TL;DR: It is demonstrated that local aggregation over very few chains is a sufficient mesoscopic structure to ensure high mobility, with charge transport mainly occurring along the polymer backbones, and that extended crystallinity is not necessary.
Abstract: Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the π-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains.

170 citations

Journal ArticleDOI
TL;DR: In this paper, structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage in polymer:fullerene solar cells.
Abstract: The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage. We aim to highlight unexplored research opportunities and provide some guidelines for the synthesis of new conjugated polymers for high-efficiency solar cells.

148 citations

Journal ArticleDOI
TL;DR: In this article, two pairs of indacenodithiophene (IDT) and quinoxaline-based copolymers with meta- or para-hexyl-phenyl side chains on the IDT unit are synthesized.
Abstract: Two pairs of indacenodithiophene (IDT) and quinoxaline-based copolymers with meta- or para-hexyl-phenyl side chains on the IDT unit are synthesized. The meta-substituted polymers offer better solubility, higher molecular weight for both fluorinated and non-fluorinated copolymers, and a superior photovoltaic performance with a power conversion efficiency of 7.8%. The side-chain design strategy presented is an efficient way to produce high performance conjugated polymers for organic electronics.

134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a unified model of how charge carriers travel in conjugated polymer films is proposed, and it is shown that in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.
Abstract: Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. The recent demonstration that highly disordered polymer films can transport charges as effectively as polycrystalline semiconductors has called into question the relationship between structural order and mobility in organic materials. It is now shown that, in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.

1,662 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
TL;DR: This paper presents a new mesoporous-based approach to composites engineering that combines high-performance materials such as cadmium, cadmiferousmaterials, and polymethine with low-cost materials like brass and copper.
Abstract: Xugang Guo,*,† Antonio Facchetti,*,‡,§ and Tobin J. Marks*,‡ †Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China ‡Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077, United States

810 citations