scispace - formally typeset
Search or ask a question
Author

Scott M. Wilson

Bio: Scott M. Wilson is an academic researcher from University of Alabama at Birmingham. The author has contributed to research in topics: Ubiquitin & Proteasome. The author has an hindex of 27, co-authored 38 publications receiving 3797 citations. Previous affiliations of Scott M. Wilson include National Institutes of Health & University of South Florida.

Papers
More filters
Journal ArticleDOI
09 Sep 2010-Nature
TL;DR: It is shown that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin–protein conjugates both in vitro and in cells.
Abstract: Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.

802 citations

Journal ArticleDOI
TL;DR: Collectively, these studies identify Rab27a as a critical gene for organelle-specific protein trafficking in melanocytes and platelets and suggest that Rab 27a functions in both MyoVa dependent and independent pathways.
Abstract: The dilute (d), leaden (ln), and ashen (ash) mutations provide a unique model system for studying vesicle transport in mammals. All three mutations produce a lightened coat color because of defects in pigment granule transport. In addition, all three mutations are suppressed by the semidominant dilute-suppressor (dsu), providing genetic evidence that these mutations function in the same or overlapping transport pathways. Previous studies showed that d encodes a major vesicle transport motor, myosin-VA, which is mutated in Griscelli syndrome patients. Here, using positional cloning and bacterial artificial chromosome rescue, we show that ash encodes Rab27a. Rab GTPases represent the largest branch of the p21 Ras superfamily and are recognized as key players in vesicular transport and organelle dynamics in eukaryotic cells. We also show that ash mice have platelet defects resulting in increased bleeding times and a reduction in the number of platelet dense granules. These defects have not been reported for d and ln mice. Collectively, our studies identify Rab27a as a critical gene for organelle-specific protein trafficking in melanocytes and platelets and suggest that Rab27a functions in both MyoVa dependent and independent pathways.

392 citations

Journal ArticleDOI
TL;DR: It is shown that ax encodes ubiquitin-specific protease 14 (Usp14), and expression of Usp14 is significantly altered in axJ/axJ mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of USp14.
Abstract: Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.

250 citations

Journal ArticleDOI
TL;DR: The data identify a conserved CD function in α-syn degradation and identify CD as a novel target for LB disease therapeutics.
Abstract: α-synuclein (α-syn) is a main component of Lewy bodies (LB) that occur in many neurodegenerative diseases, including Parkinson's disease (PD), dementia with LB (DLB) and multi-system atrophy. α-syn mutations or amplifications are responsible for a subset of autosomal dominant familial PD cases, and overexpression causes neurodegeneration and motor disturbances in animals. To investigate mechanisms for α-syn accumulation and toxicity, we studied a mouse model of lysosomal enzyme cathepsin D (CD) deficiency, and found extensive accumulation of endogenous α-syn in neurons without overabundance of α-syn mRNA. In addition to impaired macroautophagy, CD deficiency reduced proteasome activity, suggesting an essential role for lysosomal CD function in regulating multiple proteolytic pathways that are important for α-syn metabolism. Conversely, CD overexpression reduces α-syn aggregation and is neuroprotective against α-syn overexpression-induced cell death in vitro. In a C. elegans model, CD deficiency exacerbates α-syn accumulation while its overexpression is protective against α-syn-induced dopaminergic neurodegeneration. Mutated CD with diminished enzymatic activity or overexpression of cathepsins B (CB) or L (CL) is not protective in the worm model, indicating a unique requirement for enzymatically active CD. Our data identify a conserved CD function in α-syn degradation and identify CD as a novel target for LB disease therapeutics.

221 citations

Journal ArticleDOI
TL;DR: Heterozygous Cacna1a Fcrtm1/+ mice are phenotypically normal, despite having a 50% reduction in current density, indicating that reduced current density is not itself sufficient to cause the pathophysiology of spontaneous mouse mutants with ataxia and seizures.
Abstract: SPECIFIC AIMSP/Q-type voltage-dependent calcium channel CACNA1A mutations cause dominantly inherited migraine, episodic ataxia, and cerebellar atrophy in humans and recessively inherited ataxia, ep...

195 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport.
Abstract: Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport. Rab proteins and their effectors coordinate consecutive stages of transport, such as vesicle formation, vesicle and organelle motility, and tethering of vesicles to their target compartment. These molecules are highly compartmentalized in organelle membranes, making them excellent candidates for determining transport specificity and organelle identity.

3,373 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease, which may spring from a detailed understanding of the pathways underlying proteome maintenance.
Abstract: Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.

2,803 citations

Journal ArticleDOI
TL;DR: The molecular relationships and physiological functions of these calcium channel proteins are presented and comprehensive information on their molecular, genetic, physiological, and pharmacological properties is provided.
Abstract: The family of voltage-gated sodium channels initiates action potentials in all types of excitable cells. Nine members of the voltage-gated sodium channel family have been characterized in mammals, and a 10th member has been recognized as a related protein. These distinct sodium channels have similar structural and functional properties, but they initiate action potentials in different cell types and have distinct regulatory and pharmacological properties. This article presents the molecular relationships and physiological roles of these sodium channel proteins and provides comprehensive information on their molecular, genetic, physiological, and pharmacological properties.

2,199 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: It is found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB), providing a potential therapeutic target to enhance cellular clearing in lysOSomal storage disorders and neurodegenerative diseases.
Abstract: Lysosomes are organelles central to degradation and recycling processes in animal cells. Whether lysosomal activity is coordinated to respond to cellular needs remains unclear. We found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB). Under aberrant lysosomal storage conditions, TFEB translocated from the cytoplasm to the nucleus, resulting in the activation of its target genes. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules, such as glycosaminoglycans and the pathogenic protein that causes Huntington's disease. Thus, a genetic program controls lysosomal biogenesis and function, providing a potential therapeutic target to enhance cellular clearing in lysosomal storage disorders and neurodegenerative diseases.

1,928 citations