scispace - formally typeset
Search or ask a question
Author

Scott Sheffield

Other affiliations: Stanford University, Microsoft, New York University  ...read more
Bio: Scott Sheffield is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Random walk & Brownian motion. The author has an hindex of 46, co-authored 147 publications receiving 8336 citations. Previous affiliations of Scott Sheffield include Stanford University & Microsoft.


Papers
More filters
Journal ArticleDOI
TL;DR: The d-dimensional Gaussian free field (GFF) as mentioned in this paper is a generalization of the simple random walk (when time and space are appropriately scaled), which is the limit of many incrementally varying random functions on a ddimensional grid.
Abstract: The d-dimensional Gaussian free field (GFF), also called the (Euclidean bosonic) massless free field, is a d-dimensional-time analog of Brownian motion. Just as Brownian motion is the limit of the simple random walk (when time and space are appropriately scaled), the GFF is the limit of many incrementally varying random functions on d-dimensional grids. We present an overview of the GFF and some of the properties that are useful in light of recent connections between the GFF and the Schramm–Loewner evolution.

500 citations

Journal ArticleDOI
TL;DR: In this article, a general quadratic relation between these two dimensions was derived, which they view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819-826, 1988) relation from conformal field theory.
Abstract: Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy (2π)−1∫ D ∇h(z)⋅∇h(z)dz, and a constant 0≤γ<2. The Liouville quantum gravity measure on D is the weak limit as e→0 of the measures $$\varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)}dz,$$ where dz is Lebesgue measure on D and h e (z) denotes the mean value of h on the circle of radius e centered at z. Given a random (or deterministic) subset X of D one can define the scaling dimension of X using either Lebesgue measure or this random measure. We derive a general quadratic relation between these two dimensions, which we view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819–826, 1988) relation from conformal field theory. We also present a boundary analog of KPZ (for subsets of ∂D). We discuss the connection between discrete and continuum quantum gravity and provide a framework for understanding Euclidean scaling exponents via quantum gravity.

461 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral curve of the Kasteleyn operator of a bipartite, doubly periodic graph G embedded in the plane is shown to be a Harnack curve.
Abstract: We study random surfaces which arise as height functions of random perfect matchings (a.k.a. dimer configurations) on a weighted, bipartite, doubly periodic graph G embedded in the plane. We derive explicit formulas for the surface tension and local Gibbs measure probabilities of these models. The answers involve a certain plane algebraic curve, which is the spectral curve of the Kasteleyn operator of the graph. For example, the surface tension is the Legendre dual of the Ronkin function of the spectral curve. The amoeba of the spectral curve represents the phase diagram of the dimer model. Further, we prove that the spectral curve of a dimer model is always a real curve of special type, namely it is a Harnack curve. This implies many qualitative and quantitative statement about the behavior of the dimer model, such as existence of smooth phases, decay rate of correlations, growth rate of height function fluctuations, etc.

455 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider a class of zero-sum two-player stochastic games called tug-of-war and use them to prove that every bounded real-valued Lipschitz function F on a subset Y of a length space X admits a unique AM extension to X.
Abstract: We consider a class of zero-sum two-player stochastic games called tug-of-war and use them to prove that every bounded real-valued Lipschitz function F on a subset Y of a length space X admits a unique absolutely minimal (AM) extension to X, i.e., a unique Lipschitz extension u : X → ℝ for which Lip U u = Lip ∂u u for all open U ⊂ X \ Y.

438 citations

Posted Content
TL;DR: In this article, the spectral curve of the Kasteleyn operator of a bipartite, doubly periodic graph G embedded in the plane is shown to be a Harnack curve.
Abstract: We study random surfaces which arise as height functions of random perfect matchings (a.k.a. dimer configurations) on an weighted, bipartite, doubly periodic graph G embedded in the plane. We derive explicit formulas for the surface tension and local Gibbs measure probabilities of these models. The answers involve a certain plane algebraic curve, which is the spectral curve of the Kasteleyn operator of the graph. For example, the surface tension is the Legendre dual of the Ronkin function of the spectral curve. The amoeba of the spectral curve represents the phase diagram of the dimer model. Further, we prove that the spectral curve of a dimer model is always a real curve of special type, namely it is a Harnack curve. This implies many qualitative and quantitative statement about the behavior of the dimer model, such as existence of smooth phases, decay rate of correlations, growth rate of height function fluctuations, etc.

408 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

Journal ArticleDOI
TL;DR: Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944 as mentioned in this paper, and there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them.
Abstract: R J Baxter 1982 London: Academic xii + 486 pp price £43.60 Over the past few years there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them. Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944.

1,658 citations

Book ChapterDOI
31 Oct 2006

1,424 citations