scispace - formally typeset
Search or ask a question
Author

Scott Shenker

Other affiliations: PARC, International Computer Science Institute, Xerox  ...read more
Bio: Scott Shenker is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: The Internet & Network packet. The author has an hindex of 150, co-authored 454 publications receiving 118017 citations. Previous affiliations of Scott Shenker include PARC & International Computer Science Institute.


Papers
More filters
Journal ArticleDOI
31 Mar 2008
TL;DR: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day, based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries.
Abstract: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day. OpenFlow is based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries. Our goal is to encourage networking vendors to add OpenFlow to their switch products for deployment in college campus backbones and wiring closets. We believe that OpenFlow is a pragmatic compromise: on one hand, it allows researchers to run experiments on heterogeneous switches in a uniform way at line-rate and with high port-density; while on the other hand, vendors do not need to expose the internal workings of their switches. In addition to allowing researchers to evaluate their ideas in real-world traffic settings, OpenFlow could serve as a useful campus component in proposed large-scale testbeds like GENI. Two buildings at Stanford University will soon run OpenFlow networks, using commercial Ethernet switches and routers. We will work to encourage deployment at other schools; and We encourage you to consider deploying OpenFlow in your university network too

9,138 citations

Proceedings ArticleDOI
27 Aug 2001
TL;DR: The concept of a Content-Addressable Network (CAN) as a distributed infrastructure that provides hash table-like functionality on Internet-like scales is introduced and its scalability, robustness and low-latency properties are demonstrated through simulation.
Abstract: Hash tables - which map "keys" onto "values" - are an essential building block in modern software systems. We believe a similar functionality would be equally valuable to large distributed systems. In this paper, we introduce the concept of a Content-Addressable Network (CAN) as a distributed infrastructure that provides hash table-like functionality on Internet-like scales. The CAN is scalable, fault-tolerant and completely self-organizing, and we demonstrate its scalability, robustness and low-latency properties through simulation.

6,703 citations

Proceedings Article
22 Jun 2010
TL;DR: Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.
Abstract: MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms, as well as interactive data analysis tools. We propose a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.

4,959 citations

Proceedings Article
25 Apr 2012
TL;DR: Resilient Distributed Datasets is presented, a distributed memory abstraction that lets programmers perform in-memory computations on large clusters in a fault-tolerant manner and is implemented in a system called Spark, which is evaluated through a variety of user applications and benchmarks.
Abstract: We present Resilient Distributed Datasets (RDDs), a distributed memory abstraction that lets programmers perform in-memory computations on large clusters in a fault-tolerant manner. RDDs are motivated by two types of applications that current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools. In both cases, keeping data in memory can improve performance by an order of magnitude. To achieve fault tolerance efficiently, RDDs provide a restricted form of shared memory, based on coarse-grained transformations rather than fine-grained updates to shared state. However, we show that RDDs are expressive enough to capture a wide class of computations, including recent specialized programming models for iterative jobs, such as Pregel, and new applications that these models do not capture. We have implemented RDDs in a system called Spark, which we evaluate through a variety of user applications and benchmarks.

4,151 citations

Proceedings ArticleDOI
21 Mar 1999
TL;DR: This paper investigates the page request distribution seen by Web proxy caches using traces from a variety of sources and considers a simple model where the Web accesses are independent and the reference probability of the documents follows a Zipf-like distribution, suggesting that the various observed properties of hit-ratios and temporal locality are indeed inherent to Web accesse observed by proxies.
Abstract: This paper addresses two unresolved issues about Web caching. The first issue is whether Web requests from a fixed user community are distributed according to Zipf's (1929) law. The second issue relates to a number of studies on the characteristics of Web proxy traces, which have shown that the hit-ratios and temporal locality of the traces exhibit certain asymptotic properties that are uniform across the different sets of the traces. In particular, the question is whether these properties are inherent to Web accesses or whether they are simply an artifact of the traces. An answer to these unresolved issues will facilitate both Web cache resource planning and cache hierarchy design. We show that the answers to the two questions are related. We first investigate the page request distribution seen by Web proxy caches using traces from a variety of sources. We find that the distribution does not follow Zipf's law precisely, but instead follows a Zipf-like distribution with the exponent varying from trace to trace. Furthermore, we find that there is only (i) a weak correlation between the access frequency of a Web page and its size and (ii) a weak correlation between access frequency and its rate of change. We then consider a simple model where the Web accesses are independent and the reference probability of the documents follows a Zipf-like distribution. We find that the model yields asymptotic behaviour that are consistent with the experimental observations, suggesting that the various observed properties of hit-ratios and temporal locality are indeed inherent to Web accesses observed by proxies. Finally, we revisit Web cache replacement algorithms and show that the algorithm that is suggested by this simple model performs best on real trace data. The results indicate that while page requests do indeed reveal short-term correlations and other structures, a simple model for an independent request stream following a Zipf-like distribution is sufficient to capture certain asymptotic properties observed at Web proxies.

3,582 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Journal ArticleDOI
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.

12,539 citations

Proceedings ArticleDOI
02 Nov 2016
TL;DR: TensorFlow as mentioned in this paper is a machine learning system that operates at large scale and in heterogeneous environments, using dataflow graphs to represent computation, shared state, and the operations that mutate that state.
Abstract: TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

10,913 citations