scispace - formally typeset
Search or ask a question
Author

Scott Stanford

Other affiliations: Willow Garage
Bio: Scott Stanford is an academic researcher from SRI International. The author has contributed to research in topics: Artificial muscle & Electroactive polymers. The author has an hindex of 21, co-authored 29 publications receiving 3212 citations. Previous affiliations of Scott Stanford include Willow Garage.

Papers
More filters
Proceedings ArticleDOI
16 Jul 2001
TL;DR: In this article, the authors discuss the fundamentals of dielectric elastomer generators, experimental verification of the phenomenon, practical issues, and potential applications, and discuss the operating conditions and materials required for high efficiency.
Abstract: Dielectric elastomers have shown great promise as actuator materials. Their advantages in converting mechanical to electrical energy in a generator mode are less well known. If a low voltage charge is placed on a stretched elastomer prior to contraction, the contraction works against the electrostatic field pressure and raises the voltage of the charge, thus generating electrical energy. This paper discusses the fundamentals of dielectric elastomer generators, experimental verification of the phenomenon, practical issues, and potential applications. Acrylic elastomers have demonstrated an estimated 0.4 J/g specific energy density, greater than that of piezoelectric materials. Much higher energy densities, over 1 J/g, are predicted. Conversion efficiency can also be high, theoretically up to 80-90%; the paper discusses the operating conditions and materials required for high efficiency. Practical considerations may limit the specific outputs and efficiencies of dielectric elastomeric generators, tradeoffs between electronics and generator material performance are discussed. Lastly, the paper describes work on potential applications such as an ongoing effort to develop a boot generator based on dielectric elastomers, as well as other applications such as conventional power generators, backpack generators, and wave power applications.

474 citations

Proceedings ArticleDOI
10 Jul 2002
TL;DR: Testing with experimental biological techniques and apparatus has confirmed that these dielectric elastomer artificial muscles can indeed reproduce several of the important characteristics of natural muscle.
Abstract: To achieve desirable biomimetic motion, actuators must be able to reproduce the important features of natural muscle such as power, stress, strain, speed of response, efficiency, and controllability. It is a mistake, however, to consider muscle as only an energy output device. Muscle is multifunctional. In locomotion, muscle often acts as an energy absorber, variable-stiffness suspension element, or position sensor, for example. Electroactive polymer technologies based on the electric-field-induced deformation of polymer dielectrics with compliant electrodes are particularly promising because they have demonstrated high strains and energy densities. Testing with experimental biological techniques and apparatus has confirmed that these dielectric elastomer artificial muscles can indeed reproduce several of the important characteristics of natural muscle. Several different artificial muscle actuator configurations have been tested, including flat actuators and tubular rolls. Rolls have been shown to act as structural elements and to incorporate position sensing. Biomimetic robot applications have been explored that exploit the muscle-like capabilities of the dielectric elastomer actuators, including serpentine manipulators, insect-like flapping-wing mechanisms, and insect-like walking robots.

333 citations

Proceedings ArticleDOI
09 Jul 2002
TL;DR: A particularly promising class of EAPs is dielectric elastomer, also known as electroelastomer as mentioned in this paper, which has been developed to the point where exceptional performance has already been demonstrated: for example, actuated strains of over 300 percent.
Abstract: Electroactive polymers (EAPs) can overcome many limitations of traditional smart material and transducer technologies. A particularly promising class of EAP is dielectric elastomer, also known as electroelastomer. Dielectric elastomer transducers are rubbery polymer materials with compliant electrodes that have a large electromechanical response to an applied electric field. The technology has been developed to the point where exceptional performance has already been demonstrated: for example, actuated strains of over 300 percent. These strains and the corresponding energy densities are beyond those of other field-activated materials including piezoelectrics. Because of their unique characteristics and expected low cost, dielectric elastomer transducers are under development in a wide range of applications including multifunctional (combined actuation, structure, and sensing) muscle-like actuators for biomimetic robots; microelectromechanical systems (MEMS); smart skins; conformal loudspeakers; haptic displays; and replacements for electromagnetic and pneumatic actuators for industrial and commercial applications. Dielectric elastomers have shown unique performance in each of these applications; however, some further development is required before they can be integrated into products and smart-materials systems. Among the many issues that may ultimately determine the success or failure of the technology for specific applications are durability, operating voltage and power requirements, and the size, cost, and complexity of the required electronic driving circuitry.

331 citations

Proceedings ArticleDOI
19 May 2008
TL;DR: This paper describes a novel clamping technology called compliant electroadhesion, as well as the first application of this technology to wall climbing robots, and shows the ability to repeatably clamp to wall substrates that are heavily covered in dust or other debris.
Abstract: This paper describes a novel clamping technology called compliant electroadhesion, as well as the first application of this technology to wall climbing robots. As the name implies, electroadhesion is an electrically controllable adhesion technology. It involves inducing electrostatic charges on a wall substrate using a power supply connected to compliant pads situated on the moving robot. High clamping forces (0.2-1.4 Newton supported by 1 square centimeter of clamp area, depending on substrate) have been demonstrated on a wide variety of common building substrates, both rough and smooth as well as both electrically conductive and insulating. Unlike conventional adhesives or dry adhesives, the electroadhesion can be modulated or turned off for mobility or cleaning. The technology uses a very small amount of power (on the order of 20 microwatts/Newton weight held) and shows the ability to repeatably clamp to wall substrates that are heavily covered in dust or other debris. Using this technology, SRI International has demonstrated a variety of wall climbing robots including tracked and legged robots.

276 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Abstract: Energy harvesting has grown from long-established concepts into devices for powering ubiquitously deployed sensor networks and mobile electronics. Systems can scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations. Ongoing power management developments enable battery-powered electronics to live longer. Such advances include dynamic optimization of voltage and clock rate, hybrid analog-digital designs, and clever wake-up procedures that keep the electronics mostly inactive. Exploiting renewable energy resources in the device's environment, however, offers a power source limited by the device's physical survival rather than an adjunct energy store. Energy harvesting's true legacy dates to the water wheel and windmill, and credible approaches that scavenge energy from waste heat or vibration have been around for many decades. Nonetheless, the field has encountered renewed interest as low-power electronics, wireless standards, and miniaturization conspire to populate the world with sensor networks and mobile devices. This article presents a whirlwind survey through energy harvesting, spanning historic and current developments.

2,497 citations

Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented flexible organic solar cells that are less than 2 μm thick, have very low specific weight and maintain their photovoltaic performance under repeated mechanical deformation.
Abstract: Organic solar cells are promising for technological applications, as they are lightweight and mechanically robust. This study presents flexible organic solar cells that are less than 2 μm thick, have very low specific weight and maintain their photovoltaic performance under repeated mechanical deformation.

1,451 citations

Journal ArticleDOI
TL;DR: A number of materials have been explored for their use as artificial muscles, but dielectric elastomers appear to provide the best combination of properties for true muscle-like actuation, and widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames.
Abstract: A number of materials have been explored for their use as artificial muscles Among these, dielectric elastomers (DEs) appear to provide the best combination of properties for true muscle-like actuation DEs behave as compliant capacitors, expanding in area and shrinking in thickness when a voltage is applied Materials combining very high energy densities, strains, and efficiencies have been known for some time To date, however, the widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames Recent advances seem poised to remove these restrictions and allow for the production of highly reliable, high-performance transducers for artificial muscle applications

1,299 citations