scispace - formally typeset
Search or ask a question
Author

Scott Tremaine

Bio: Scott Tremaine is an academic researcher from Institute for Advanced Study. The author has contributed to research in topics: Galaxy & Planet. The author has an hindex of 90, co-authored 256 publications receiving 44123 citations. Previous affiliations of Scott Tremaine include Canadian Institute for Advanced Research & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio , and a central massive dark object (MDO) of arbitrary mass M•. They provide acceptable fits to 32 of the galaxies for some value of M• and ; the four galaxies that cannot be fitted have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fitted galaxies are consistent with the fundamental-plane correlation ∝ L0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M• ~ 0.006Mbulge ≡ 0.006L. Five of the six galaxies consistent with M• = 0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M•. We predict the second-moment profiles that should be observed at HST resolution for the 32 galaxies that our models describe well. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f 0.97 of early-type galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M•/Mbulge) of mean -2.28 and standard deviation ~0.51. There is also marginal evidence that M• is distributed differently for core and power law galaxies, with core galaxies having a somewhat steeper dependence on Mbulge.

3,976 citations

Journal ArticleDOI
TL;DR: In this paper, a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius is described.
Abstract: We describe a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius. The result is based on a sample of 26 galaxies, including 13 galaxies with new determinations of black hole masses from Hubble Space Telescope measurements of stellar kinematics. The best-fit correlation is Mbh = 1.2(±0.2) × 108 M☉(σe/200 km s-1)3.75 (±0.3) over almost 3 orders of magnitude in Mbh; the scatter in Mbh at fixed σe is only 0.30 dex, and most of this is due to observational errors. The Mbh-σe relation is of interest not only for its strong predictive power but also because it implies that central black hole mass is constrained by and closely related to properties of the host galaxy's bulge.

3,901 citations

Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio Upsilon, and a central massive dark object of arbitrary mass M_bh.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio Upsilon, and a central massive dark object (MDO) of arbitrary mass M_bh. They provide acceptable fits to 32 of the galaxies for some value of M_bh and Upsilon; the four galaxies that cannot be fit have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fit galaxies are consistent with the fundamental plane correlation Upsilon \propto L^0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M_bh ~ 0.006 M_bulge = 0.006 Upsilon L. Five of the six galaxies consistent with M_bh=0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M_bh. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f ~0.97 of galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M_bh/M_bulge) of mean -2.27 and width ~0.07.

3,553 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the range of slopes arises mostly due of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies, and that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersion to re= 8( re is the effective radius) using an empirical formula.
Abstract: Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object MBH and the velocity dispersionof the host galaxy, of the form logðMBH=M� Þ¼ � þ � logð�=� 0Þ; how- ever, published estimates of the slopespan a wide range (3.75-5.3). Merritt & Ferrarese have argued that low slopes (d4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations and several others account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to re= 8( re is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the mea- surements. A new determination of the slope using 31 galaxies yields � ¼ 4:02 � 0:32, � ¼ 8:13 � 0:06 for � 0 ¼ 200 km s � 1 . The MBH-� relation has an intrinsic dispersion in log MBH that is no larger than 0.25-0.3 dex and may be smaller if observational errors have been underestimated. In an appendix, we present a simple kinematic model for the velocity-dispersion profile of the Galactic bulge. Subject headings: black hole physics — galaxies: bulges — galaxies: fundamental parameters — galaxies: nuclei — Galaxy: bulge — Galaxy: kinematics and dynamics

2,742 citations

Journal ArticleDOI
TL;DR: In this article, the authors calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass, and show that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.
Abstract: We calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass. A satellite which moves on a circular orbit exerts a torque on the disk only in the immediate vicinity of its Lindblad resonances. The direction of angular momentum transport is outward, from disk material inside the satellite's orbit to the satellite and from the satellite to disk material outside its orbit. A satellite with an eccentric orbit exerts a torque on the disk at corotation resonances as well as at Lindblad resonances. The angular momentum and energy transfer at Lindblad resonances tends to increase the satellite's orbit eccentricity whereas the transfer at corotation resonances tends to decrease it. In a Keplerian disk, to lowest order in eccentricity and in the absence of nonlinear effects, the corotation resonances dominate by a slight margin and the eccentricity damps. However, if the strongest corotation resonances saturate due to particle trapping, then the eccentricity grows. We present an illustrative application of our results to the interaction between Jupiter and the protoplanetary disk. The angular momentum transfer is shown to be so rapid that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.

1,601 citations


Cited by
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: In this article, the authors used high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes, and they found that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters.
Abstract: We use high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes. We find that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters. Spherically averaged equilibrium profiles are well fitted over two decades in radius by a simple formula originally proposed to describe the structure of galaxy clusters in a cold dark matter universe. In any particular cosmology, the two scale parameters of the fit, the halo mass and its characteristic density, are strongly correlated. Low-mass halos are significantly denser than more massive systems, a correlation that reflects the higher collapse redshift of small halos. The characteristic density of an equilibrium halo is proportional to the density of the universe at the time it was assembled. A suitable definition of this assembly time allows the same proportionality constant to be used for all the cosmologies that we have tested. We compare our results with previous work on halo density profiles and show that there is good agreement. We also provide a step-by-step analytic procedure, based on the Press-Schechter formalism, that allows accurate equilibrium profiles to be calculated as a function of mass in any hierarchical model.

9,729 citations

Journal ArticleDOI
TL;DR: GADGET-2 as mentioned in this paper is a massively parallel tree-SPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics.
Abstract: We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the ‘tree’ method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different time-steps. Individual and adaptive short-range time-steps may also be employed. The domain decomposition used in the parallelization algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10 10 dark matter particles, reaching a homogeneous spatial dynamic range of 10 5 per dimension in a three-dimensional box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. We present the algorithms used by the code and discuss their accuracy and performance using a number of test problems. GADGET-2 is publicly released to the research community. Ke yw ords: methods: numerical ‐ galaxies: interactions ‐ dark matter.

6,196 citations

Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations

Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: It is shown that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
Abstract: The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

4,814 citations