scispace - formally typeset
Search or ask a question
Author

Scott V. Bratman

Bio: Scott V. Bratman is an academic researcher from Princess Margaret Cancer Centre. The author has contributed to research in topics: Medicine & Cancer. The author has an hindex of 34, co-authored 170 publications receiving 7041 citations. Previous affiliations of Scott V. Bratman include Ontario Institute for Cancer Research & Columbia University.


Papers
More filters
Journal ArticleDOI
TL;DR: A pan-cancer resource and meta-analysis of expression signatures from ∼18,000 human tumors with overall survival outcomes across 39 malignancies is presented and it is found that expression of favorably prognostic genes, including KLRB1 (encoding CD161), largely reflect tumor-associated leukocytes.
Abstract: Molecular profiles of tumors and tumor-associated cells hold great promise as biomarkers of clinical outcomes. However, existing data sets are fragmented and difficult to analyze systematically. Here we present a pan-cancer resource and meta-analysis of expression signatures from ∼18,000 human tumors with overall survival outcomes across 39 malignancies. By using this resource, we identified a forkhead box MI (FOXM1) regulatory network as a major predictor of adverse outcomes, and we found that expression of favorably prognostic genes, including KLRB1 (encoding CD161), largely reflect tumor-associated leukocytes. By applying CIBERSORT, a computational approach for inferring leukocyte representation in bulk tumor transcriptomes, we identified complex associations between 22 distinct leukocyte subsets and cancer survival. For example, tumor-associated neutrophil and plasma cell signatures emerged as significant but opposite predictors of survival for diverse solid tumors, including breast and lung adenocarcinomas. This resource and associated analytical tools (http://precog.stanford.edu) may help delineate prognostic genes and leukocyte subsets within and across cancers, shed light on the impact of tumor heterogeneity on cancer outcomes, and facilitate the discovery of biomarkers and therapeutic targets.

2,153 citations

Journal ArticleDOI
TL;DR: It is envisioned that CAPP-Seq could be routinely applied clinically to detect and monitor diverse malignancies, thus facilitating personalized cancer therapy.
Abstract: Circulating tumor DNA (ctDNA) represents a promising biomarker for noninvasive assessment of cancer burden, but existing methods have insufficient sensitivity or patient coverage for broad clinical applicability. Here we introduce CAncer Personalized Profiling by deep Sequencing (CAPP-Seq), an economical and ultrasensitive method for quantifying ctDNA. We implemented CAPP-Seq for non-small cell lung cancer (NSCLC) with a design covering multiple classes of somatic alterations that identified mutations in >95% of tumors. We detected ctDNA in 100% of stage II–IV and 50% of stage I NSCLC patients, with 96% specificity for mutant allele fractions down to ~0.02%. Levels of ctDNA significantly correlated with tumor volume, distinguished between residual disease and treatment-related imaging changes, and provided earlier response assessment than radiographic approaches. Finally, we explored biopsy-free tumor screening and genotyping with CAPP-Seq. We envision that CAPP-Seq could be routinely applied clinically to detect and monitor diverse malignancies, thus facilitating personalized cancer therapy.

1,749 citations

Journal ArticleDOI
TL;DR: This work introduces an approach for integrated digital error suppression (iDES), which combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules, and facilitates noninvasive variant detection across hundreds of kilobases of circulating tumor DNA.
Abstract: High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by about threefold, and synergize when combined to yield ∼15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to non-small cell lung cancer (NSCLC) patients, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and >99.99% specificity at the variant level, and with 90% sensitivity and 96% specificity at the patient level. In addition, our approach allowed monitoring of NSCLC ctDNA down to 4 in 10(5) cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings.

816 citations

Journal ArticleDOI
Sagi Abelson1, Grace Collord2, Grace Collord3, Stanley W.K. Ng4, Omer Weissbrod5, Netta Mendelson Cohen5, Elisabeth Niemeyer5, Noam Barda, Philip C. Zuzarte6, Lawrence E. Heisler6, Yogi Sundaravadanam6, Robert Luben2, Shabina Hayat2, Ting Ting Wang1, Ting Ting Wang4, Zhen Zhao1, Iulia Cirlan1, Trevor J. Pugh6, Trevor J. Pugh4, Trevor J. Pugh1, David Soave6, Karen Ng6, Calli Latimer3, Claire Hardy3, Keiran Raine3, David T. Jones3, Diana Hoult2, Abigail Britten2, John Douglas Mcpherson6, Mattias Johansson7, Faridah Mbabaali6, Jenna Eagles6, Jessica Miller6, Danielle Pasternack6, Lee Timms6, Paul M. Krzyzanowski6, Philip Awadalla6, Rui Costa8, Eran Segal5, Scott V. Bratman6, Scott V. Bratman4, Scott V. Bratman1, Philip A. Beer3, Sam Behjati2, Sam Behjati3, Inigo Martincorena3, Jean C.Y. Wang4, Jean C.Y. Wang9, Jean C.Y. Wang1, Kristian M. Bowles10, Kristian M. Bowles11, J. Ramón Quirós, Anna Karakatsani12, Carlo La Vecchia13, Antonia Trichopoulou, Elena Salamanca-Fernández14, José María Huerta, Aurelio Barricarte, Ruth C. Travis15, Rosario Tumino, Giovanna Masala16, Heiner Boeing, Salvatore Panico17, Rudolf Kaaks18, Alwin Krämer18, Sabina Sieri, Elio Riboli19, Paolo Vineis19, Matthieu Foll7, James McKay7, Silvia Polidoro, Núria Sala, Kay-Tee Khaw2, Roel Vermeulen20, Peter J. Campbell3, Peter J. Campbell2, Elli Papaemmanuil21, Elli Papaemmanuil3, Mark D. Minden, Amos Tanay5, Ran D. Balicer, Nicholas J. Wareham2, Moritz Gerstung3, Moritz Gerstung8, John E. Dick1, John E. Dick4, Paul Brennan7, George S. Vassiliou2, George S. Vassiliou3, Liran I. Shlush5, Liran I. Shlush1 
09 Jul 2018-Nature
TL;DR: Deep sequencing is used to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH, providing proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation.
Abstract: The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)4–8. Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.

567 citations

Journal ArticleDOI
14 Nov 2018-Nature
TL;DR: An immunoprecipitation-based protocol is developed to analyse DNA methylation in small quantities of circulating cell-free DNA, and can detect and classify cancers in plasma samples from several tumour types.
Abstract: The use of liquid biopsies for cancer detection and management is rapidly gaining prominence1. Current methods for the detection of circulating tumour DNA involve sequencing somatic mutations using cell-free DNA, but the sensitivity of these methods may be low among patients with early-stage cancer given the limited number of recurrent mutations2–5. By contrast, large-scale epigenetic alterations—which are tissue- and cancer-type specific—are not similarly constrained6 and therefore potentially have greater ability to detect and classify cancers in patients with early-stage disease. Here we develop a sensitive, immunoprecipitation-based protocol to analyse the methylome of small quantities of circulating cell-free DNA, and demonstrate the ability to detect large-scale DNA methylation changes that are enriched for tumour-specific patterns. We also demonstrate robust performance in cancer detection and classification across an extensive collection of plasma samples from several tumour types. This work sets the stage to establish biomarkers for the minimally invasive detection, interception and classification of early-stage cancers based on plasma cell-free DNA methylation patterns. An immunoprecipitation-based protocol is developed to analyse DNA methylation in small quantities of circulating cell-free DNA, and can detect and classify cancers in plasma samples from several tumour types.

495 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fastp is developed as an ultra‐fast FASTQ preprocessor with useful quality control and data‐filtering features that can perform quality control, adapter trimming, quality filtering, per‐read quality pruning and many other operations with a single scan of the FAST Q data.
Abstract: Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2-5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.

7,461 citations

Posted ContentDOI
01 Mar 2018-bioRxiv
TL;DR: Fastp is developed as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features that can perform quality control, adapter trimming, quality filtering, per-read quality cutting, and many other operations with a single scan of the FastQ data.
Abstract: Motivation: Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming, and quality filtering. These tools are often insufficiently fast as most are developed using high level programming languages (e.g., Python and Java) and provide limited multithreading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results: We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per read quality cutting, and many other operations with a single scan of the FASTQ data. It also supports unique molecular identifier preprocessing, poly tail trimming, output splitting, and base correction for paired-end data. It can automatically detect adapters for single-end and paired-end FASTQ data. This tool is developed in C++ and has multithreading support. Based on our evaluation, fastp is 2 to 5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and Implementation: The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp

4,300 citations

Journal ArticleDOI
17 Apr 2018-Immunity
TL;DR: An extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA identifies six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis.

3,246 citations

Journal ArticleDOI
TL;DR: Tumor Immune Estimation Resource (TIMER) is presented to comprehensively investigate molecular characterization of tumor-immune interactions and provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers.
Abstract: Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.

3,236 citations

Journal ArticleDOI
TL;DR: These ESMO consensus guidelines have been developed based on the current available evidence to provide a series of evidence-based recommendations to assist in the treatment and management of patients with mCRC in this rapidly evolving treatment setting.

2,382 citations