scispace - formally typeset
Search or ask a question
Author

Scott W. Corzine

Other affiliations: John Wiley & Sons, University of California, Broadcom  ...read more
Bio: Scott W. Corzine is an academic researcher from Agilent Technologies. The author has contributed to research in topics: Laser & Semiconductor laser theory. The author has an hindex of 39, co-authored 151 publications receiving 7942 citations. Previous affiliations of Scott W. Corzine include John Wiley & Sons & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Phenomenological Approach to Diode Lasers is presented, where mirrors and Resonators are used for diode luminaries, and coupled-mode theory is applied.
Abstract: Ingredients. A Phenomenological Approach to Diode Lasers. Mirrors and Resonators for Diode Lasers. Gain and Current Relations. Dynamic Effects. Perturbation and Coupled--Mode Theory. Dielectric Waveguides. Photonic Integrated Circuits. Appendices. Index.

2,550 citations

Journal ArticleDOI
TL;DR: A detailed analysis of a Fabry-Perot surface emitting laser (FP-SEL) which utilizes the recently proposed concept of periodic gain is presented in this paper, where it is shown that close to a factor-of-two reduction in threshold current should be possible; the ideal reduction of a factor of two is only limited by the internal loss of the cavity.
Abstract: A detailed analysis of a Fabry-Perot surface emitting laser (FP-SEL) which utilizes the recently proposed concept of periodic gain is presented. It is shown that by using the periodic gain concept, close to a factor-of-two reduction in threshold current should be possible; the ideal reduction of a factor of two is only limited by the internal loss of the cavity. Multiple quantum-well active regions are also considered and shown to provide greater than a factor-of-two improvement over bulk GaAs periodic and uniform gain configurations. The effects of index perturbations within the cavity created by interleaving active and passive segments are treated for different Al mole fractions within the passive segments. The effects are found to be small for x >

338 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the operation of high-reflectivity quarter-wave (QW) dielectric mirrors at the bandstop center (Bragg) frequency, relevant for the design of small-cavity optoelectronic structures.
Abstract: The authors analyze the operation of high-reflectivity quarter-wave (QW) dielectric mirrors at the band-stop center (Bragg) frequency, relevant for the design of small-cavity optoelectronic structures. The energy penetration depth concept is used to determine a first-order linear approximation for the reduction of the mirror peak reflectivity of the QE mirror as a function of the mirror material parameters and the number of layers. The expression can be applied in the limit of small loss. The mathematical analysis and expressions for the absorptance and the peak reflectivity of a dielectric mirror with weak material absorption are presented. The use of the results is illustrated for a typical vertical cavity surface-emitting laser structure. >

300 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the amplitude and phase noise of linear and ring-cavity semiconductor lasers and found that the phase noise is only measurable in detuned cavities, and is below -110 dBc (1 Hz).
Abstract: Measurements of actively mode-locked semiconductor lasers are described and compared to calculations of the mode-locking process using three coupled traveling-wave rate equations for the electron and photon densities. The dependence of pulse width on the modulation current and frequency are described. A limitation to minimum achievable pulse widths in mode-locked semiconductor lasers is shown to be dynamic tuning due to gain saturation. Techniques to achieve subpicosecond pulses are described, together with ways to reduce multiple pulse outputs. The amplitude and phase noise of linear- and ring-cavity semiconductor lasers were measured and fond to be tens of dB smaller than YAG and argon lasers and limited by the noise from the microwave oscillator. High-frequency phase noise is only measurable in detuned cavities, and is below -110 dBc (1 Hz) in optimally tuned cavities. The prospects for novel ways to achieve even shorter pulses are discussed. >

223 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported a single mode tuning range of 155 cm-1 (∼ 8% of the center wavelength) with a maximum power of 11.1mW and 182 cm −1 ( ∼ 15% of center wavelength).
Abstract: Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (∼ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (∼ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: The reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
Abstract: We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.

3,629 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host, achieving a maximum external quantum efficiency of 19.0±1.0 and luminous power efficiency of 60±5 lm/W.
Abstract: We demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host. Using bis(2-phenylpyridine)iridium(III) acetylacetonate [(ppy)2Ir(acac)] doped into 3-phenyl-4(1′-naphthyl)-5-phenyl-1,2,4-triazole, a maximum external quantum efficiency of (19.0±1.0)% and luminous power efficiency of (60±5) lm/W are achieved. The calculated internal quantum efficiency of (87±7)% is supported by the observed absence of thermally activated nonradiative loss in the photoluminescent efficiency of (ppy)2Ir(acac). Thus, very high external quantum efficiencies are due to the nearly 100% internal phosphorescence efficiency of (ppy)2Ir(acac) coupled with balanced hole and electron injection, and triplet exciton confinement within the light-emitting layer.

3,302 citations

Journal ArticleDOI
TL;DR: In this paper, a Phenomenological Approach to Diode Lasers is presented, where mirrors and Resonators are used for diode luminaries, and coupled-mode theory is applied.
Abstract: Ingredients. A Phenomenological Approach to Diode Lasers. Mirrors and Resonators for Diode Lasers. Gain and Current Relations. Dynamic Effects. Perturbation and Coupled--Mode Theory. Dielectric Waveguides. Photonic Integrated Circuits. Appendices. Index.

2,550 citations

Journal ArticleDOI
TL;DR: This paper is a review of recent progress made in organic thin films grown in ultrahigh vacuum or using other vapor-phase deposition methods and describes the most important work which has been published in this field since the emergence of OMBD in the mid-1980s.
Abstract: During the past decade, enormous progress has been made in growing ultrathin organic films and multilayer structures with a wide range of exciting optoelectronic properties. This progress has been made possible by several important advances in our understanding of organic films and their modes of growth. Perhaps the single most important advance has been the use of ultrahigh vacuum (UHV) as a means to achieve, for the first time, monolayer control over the growth of organic thin films with extremely high chemical purity and structural precision.1-3 Such monolayer control has been possible for many years using well-known techniques such as Langmuir-Blodgett film deposition,4 and more recently, self-assembled monolayers from solution have also been achieved.5 However, ultrahighvacuum growth, sometimes referred to as organic molecular beam deposition (OMBD) or organic molecular beam epitaxy (OMBE), has the advantage of providing both layer thickness control and an atomically clean environment and substrate. When combined with the ability to perform in situ highresolution structural diagnostics of the films as they are being deposited, techniques such as OMBD have provided an entirely new prospect for understanding many of the fundamental structural and optoelectronic properties of ultrathin organic film systems. Since such systems are both of intrinsic as well as practical interest, substantial effort worldwide has been invested in attempting to grow and investigate the properties of such thin-film systems. This paper is a review of recent progress made in organic thin films grown in ultrahigh vacuum or using other vapor-phase deposition methods. We will describe the most important work which has been published in this field since the emergence of OMBD in the mid-1980s. Both the nature of thin-film growth and structural ordering will be discussed, as well as some of the more interesting consequences to the physical properties of such organic thin-film systems will be considered both from a theoretical as well as an experimental viewpoint. Indeed, it will 1793 Chem. Rev. 1997, 97, 1793−1896

1,809 citations