scispace - formally typeset
Search or ask a question
Author

Sean A. McKinney

Other affiliations: Howard Hughes Medical Institute
Bio: Sean A. McKinney is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Holliday junction & Branch migration. The author has an hindex of 13, co-authored 14 publications receiving 4459 citations. Previous affiliations of Sean A. McKinney include Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
27 Jun 2003-Science
TL;DR: The results strongly support a hand-over-hand model of motility, not an inchworm model, which moves processively on actin.
Abstract: Myosin V is a dimeric molecular motor that moves processively on actin, with the center of mass moving 37 nanometers for each adenosine triphosphate hydrolyzed. We have labeled myosin V with a single fluorophore at different positions in the light-chain domain and measured the step size with a standard deviation of 1.5 nanometers, with 0.5-second temporal resolution, and observation times of minutes. The step size alternates between 37 2x nm and 37 – 2x, where x is the distance along the direction of motion between the dye and the midpoint between the two heads. These results strongly support a hand-over-hand model of motility, not an inchworm model. Myosin V is a cargo-carrying processive motor

1,888 citations

Journal ArticleDOI
TL;DR: An analysis scheme is developed that casts single-molecule time-binned FRET trajectories as hidden Markov processes, allowing one to determine, based on probability alone, the most likely FRET-value distributions of states and their interconversion rates while simultaneously determining the mostlikely time sequence of underlying states for each trajectory.

742 citations

Journal ArticleDOI
TL;DR: Trolox in combination with the enzymatic oxygen-scavenging system eliminates Cy5 blinking, dramatically reduces photobleaching and improves the signal linearity at high excitation rates, significantly extending the applicability of single-molecule fluorescence techniques.
Abstract: Photobleaching and blinking of fluorophores pose fundamental limitations on the information content of single-molecule fluorescence measurements. Photoinduced blinking of Cy5 has hampered many previous investigations using this popular fluorophore. Here we show that Trolox in combination with the enzymatic oxygen-scavenging system eliminates Cy5 blinking, dramatically reduces photobleaching and improves the signal linearity at high excitation rates, significantly extending the applicability of single-molecule fluorescence techniques.

714 citations

Journal ArticleDOI
TL;DR: Relative rates indicate that multiple conformer transitions occur at each intermediate step of branch migration, allowing the junction to reach conformational equilibrium, providing a mechanism whereby the sequence-dependent conformational bias could determine the extent of genetic exchange upon junction resolution.
Abstract: The four-way DNA (Holliday) junction is the central intermediate of genetic recombination, but the dynamic aspects of this important structure are presently unclear. Although transitions between alternative stacking conformers have been predicted, conventional kinetic studies are precluded by the inability to synchronize the junction in a single conformer in bulk solution. Using single-molecule fluorescence methodology we have been able to detect these transitions. The sequence dependence, the influence of counterions and measured energetic barriers indicate that the conformer transition and branch migration processes share the unstacked, open structure as the common intermediate but have different rate-limiting steps. Relative rates indicate that multiple conformer transitions occur at each intermediate step of branch migration, allowing the junction to reach conformational equilibrium. This provides a mechanism whereby the sequence-dependent conformational bias could determine the extent of genetic exchange upon junction resolution.

331 citations

Journal ArticleDOI
11 Aug 2006-Cell
TL;DR: Using single-molecule fluorescence assays and hidden Markov modeling, the most direct evidence is shown that a RecA filament grows and shrinks primarily one monomer at a time and only at the extremities, supporting the proposal for a passive role of RecA-loading machineries in SSB removal.

289 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
15 Sep 2006-Science
TL;DR: This work introduced a method for optically imaging intracellular proteins at nanometer spatial resolution and used this method to image specific target proteins in thin sections of lysosomes and mitochondria and in fixed whole cells to image retroviral protein Gag at the plasma membrane.
Abstract: We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to approximately 2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method--termed photoactivated localization microscopy--to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.

7,924 citations

Journal ArticleDOI
TL;DR: A high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores that can, in principle, reach molecular-scale resolution is developed.
Abstract: We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.

7,213 citations

Journal ArticleDOI
TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Abstract: Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

6,352 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations