scispace - formally typeset
Search or ask a question
Author

Sean C. Thomas

Bio: Sean C. Thomas is an academic researcher from University of Toronto. The author has contributed to research in topics: Biochar & Understory. The author has an hindex of 55, co-authored 154 publications receiving 16571 citations. Previous affiliations of Sean C. Thomas include Central South University Forestry and Technology & University of Washington.


Papers
More filters
Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
19 Feb 2009-Nature
TL;DR: Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.
Abstract: The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world's tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha(-1) yr(-1) between 1968 and 2007 (95% confidence interval (CI), 0.22-0.94; mean interval, 1987-96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr(-1) (CI, 0.15-0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha(-1) yr(-1) (n = 156; 562 ha; CI, 0.29-0.66; mean interval, 1987-97). This indicates a carbon sink of 1.3 Pg C yr(-1) (CI, 0.8-1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.

941 citations

Journal ArticleDOI
01 Sep 1986-Oikos
TL;DR: "O~~OCTO~~HHRC~" v~m ~omypew") qxmanaram Boapamame pa3mFndl npi nommem m HOC~ nowmum?
Abstract: "O~~OCTO~~HHRC~" v~m ~omypew") qxmanaram Boapamame pa3mFndl npi nommem m HOC~ nowmum?. M3 16 owcmmkx o-B, re narrquem mnma no arrw~~u~~ MOTHOC~ Ha pacnwaeneme pa3~epoe B MOHOK~~~, 14 nmepfmam mi

696 citations

Journal ArticleDOI
TL;DR: It is indicated that silvicultural thinning and fertilization can have large effects on understory plant diversity and community composition, however, such effects were not a simple function of understory light levels, and conventional ''functional types'' were of only limited value in predicting species-specific responses to silviculture treatments.
Abstract: 2 Environmental Forestry Research, Weyerhaeuser Company, Tacoma, Washington 98422 USA Abstract. Although most temperate forests are actively managed for timber production, few data exist regarding the long-term effects of forest management on understory plant communities. We investigated the responses of understory communities to a factorial com- bination of silvicultural-thinning and nutrient-addition treatments maintained for 12-16 yr in a set of 21-27 yr old Douglas-fir (Pseudotsuga menziesii) plantations. The four thinning levels span those used operationally (final stem densities of 494-1680 trees/ha); the two fertilization levels included a control and N addition in the form of urea at ;60 kg N·ha 21 ·yr 21 , about twice the dosage used operationally. Understory vegetation cover showed significant effects of thinning, with the highest thinning level resulting in the highest observed cover values. However, in some cases low levels of thinning resulted in a reduction in understory cover compared to unthinned con- trols. Understory vegetation declined dramatically in response to urea fertilization, with up to a 10-fold drop in herb-layer cover in unthinned stands. Species richness showed a simpler response to treatments, increasing in response to thinning, but decreasing in response to fertilization. Examination of species-area relationships indicated that effects of thinning and fertilization on species richness were similar across the range of spatial scales examined. Tree canopy cover, assessed by means of hemispherical photograph analysis, increased with fertilization, and estimated understory light levels decreased with fertilization, but neither showed a significant response to thinning at the time of measurement (12-16 yr after tree removal). Thus, treatment effects on understory cover and species richness were not a simple function of canopy cover or estimated light availability. Rather, there was a weak positive relationship between estimated understory light flux and vascular plant cover and diversity in nonfertilized plots, and no such relationship in fertilized plots. The lack of correspondence between treatment effects on canopy cover and understory vegetation may be due to time lags in understory response to changes in canopy cover or to treatment effects not mediated by light availability, such as physical disturbance during thinning operations and toxicity responses following application of urea fertilizer. Species-specific responses to treatments were in part predictable as a function of plant life-form and edaphic association: species affinity for high soil moisture was the best predictor of fertilization responses, while life-form was the best predictor of thinning responses, with ferns and graminoids showing the largest positive responses to thinning. The successional status and stature of understory plant species were not significantly related to treatment responses. In sum, our results indicate that silvicultural thinning and fertilization can have large effects on understory plant diversity and community composition. However, such effects were not a simple function of understory light levels, and conventional ''functional types'' were of only limited value in predicting species-specific responses to silvicultural treatments.

495 citations

Journal ArticleDOI
Kristina J. Anderson-Teixeira1, Kristina J. Anderson-Teixeira2, Stuart J. Davies3, Stuart J. Davies2, Amy C. Bennett1, Erika Gonzalez-Akre1, Helene C. Muller-Landau2, S. Joseph Wright2, Kamariah Abu Salim, Angelica M. Almeyda Zambrano1, Angelica M. Almeyda Zambrano4, Angelica M. Almeyda Zambrano5, Alfonso Alonso1, Jennifer L. Baltzer6, Yves Basset2, Norman A. Bourg1, Eben N. Broadbent4, Eben N. Broadbent1, Eben N. Broadbent5, Warren Y. Brockelman7, Sarayudh Bunyavejchewin8, David F. R. P. Burslem9, Nathalie Butt10, Nathalie Butt11, Min Cao12, Dairon Cárdenas, George B. Chuyong13, Keith Clay14, Susan Cordell15, H. S. Dattaraja16, Xiaobao Deng12, Matteo Detto2, Xiaojun Du17, Alvaro Duque18, David L. Erikson3, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher19, Robin B. Foster, Christian P. Giardina15, Gregory S. Gilbert2, Gregory S. Gilbert20, Nimal Gunatilleke21, Savitri Gunatilleke21, Zhanqing Hao17, William W. Hargrove15, Terese B. Hart, Billy C.H. Hau22, Fangliang He23, Forrest M. Hoffman24, Robert W. Howe25, Stephen P. Hubbell2, Stephen P. Hubbell26, Faith Inman-Narahari27, Patrick A. Jansen2, Patrick A. Jansen28, Mingxi Jiang17, Daniel J. Johnson14, Mamoru Kanzaki29, Abdul Rahman Kassim19, David Kenfack2, David Kenfack3, Staline Kibet30, Margaret F. Kinnaird31, Lisa Korte1, Kamil Král, Jitendra Kumar24, Andrew J. Larson32, Yide Li, Xiankun Li17, Shirong Liu, Shawn K. Y. Lum33, James A. Lutz34, Keping Ma17, Damian M. Maddalena24, Jean-Remy Makana31, Yadvinder Malhi10, Toby R. Marthews10, Rafizah Mat Serudin, Sean M. McMahon35, Sean M. McMahon2, William J. McShea1, Hervé Memiaghe36, Xiangcheng Mi17, Takashi Mizuno29, Michael D. Morecroft37, Jonathan Myers38, Vojtech Novotny39, Alexandre Adalardo de Oliveira40, Perry S. Ong41, David A. Orwig42, Rebecca Ostertag43, Jan den Ouden28, Geoffrey G. Parker35, Richard P. Phillips14, Lawren Sack26, Moses N. Sainge, Weiguo Sang17, Kriangsak Sri-ngernyuang44, Raman Sukumar16, I-Fang Sun45, Witchaphart Sungpalee44, H. S. Suresh16, Sylvester Tan, Sean C. Thomas46, Duncan W. Thomas47, Jill Thompson48, Benjamin L. Turner2, María Uriarte49, Renato Valencia50, Marta I. Vallejo, Alberto Vicentini51, Tomáš Vrška, Xihua Wang52, Xugao Wang, George D. Weiblen53, Amy Wolf25, Han Xu, Sandra L. Yap41, Jess K. Zimmerman48 
Smithsonian Conservation Biology Institute1, Smithsonian Tropical Research Institute2, National Museum of Natural History3, University of Alabama4, Stanford University5, Wilfrid Laurier University6, Mahidol University7, Department of National Parks, Wildlife and Plant Conservation8, University of Aberdeen9, Environmental Change Institute10, University of Queensland11, Xishuangbanna Tropical Botanical Garden12, University of Buea13, Indiana University14, United States Forest Service15, Indian Institute of Science16, Chinese Academy of Sciences17, National University of Colombia18, Forest Research Institute Malaysia19, University of California, Santa Cruz20, University of Peradeniya21, University of Hong Kong22, University of Alberta23, Oak Ridge National Laboratory24, University of Wisconsin–Green Bay25, University of California, Los Angeles26, College of Tropical Agriculture and Human Resources27, Wageningen University and Research Centre28, Kyoto University29, University of Nairobi30, Wildlife Conservation Society31, University of Montana32, Nanyang Technological University33, Utah State University34, Smithsonian Environmental Research Center35, Centre national de la recherche scientifique36, Natural England37, Washington University in St. Louis38, Academy of Sciences of the Czech Republic39, University of São Paulo40, University of the Philippines Diliman41, Harvard University42, University of Hawaii at Hilo43, Maejo University44, National Dong Hwa University45, University of Toronto46, Washington State University Vancouver47, University of Puerto Rico, Río Piedras48, Columbia University49, Pontificia Universidad Católica del Ecuador50, National Institute of Amazonian Research51, East China Normal University52, University of Minnesota53
TL;DR: The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Abstract: Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

470 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
Peter M. Cox1, Richard Betts1, Chris D. Jones1, S. A. Spall1, I. Totterdell 
09 Nov 2000-Nature
TL;DR: Results from a fully coupled, three-dimensional carbon–climate model are presented, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century.
Abstract: The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon–climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.

3,816 citations