scispace - formally typeset
Search or ask a question
Author

Sean M. Riordan

Bio: Sean M. Riordan is an academic researcher from Children's Mercy Hospital. The author has contributed to research in topics: Kernicterus & Medicine. The author has an hindex of 11, co-authored 21 publications receiving 726 citations. Previous affiliations of Sean M. Riordan include University of Kansas & University of Missouri–Kansas City.

Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of Bace1.
Abstract: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting. By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner. Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization.

178 citations

Journal ArticleDOI
TL;DR: Both intraneuronal Aβ accumulation and extracellular A β deposition was demonstrated in 5xFAD mice and 3xTg mice with MOAB-2, an antibody that will help differentiate intracellular Aβ from APP, however, further investigation is required to determine whether a molecular mechanism links the presence of intraneuonal A β with neurotoxicity.
Abstract: The form(s) of amyloid-β peptide (Aβ) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aβ accumulation is an issue of considerable controversy; even the existence of Aβ deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aβ. To further address this issue, an anti-Aβ antibody was developed (MOAB-2) that specifically detects Aβ, but not APP. This antibody allows for the further evaluation of the early accumulation of intraneuronal Aβ in transgenic mice with increased levels of human Aβ in 5xFAD and 3xTg mice. MOAB-2 (mouse IgG2b) is a pan-specific, high-titer antibody to Aβ residues 1-4 as demonstrated by biochemical and immunohistochemical analyses (IHC), particularly compared to 6E10 (a commonly used commercial antibody to Aβ residues 3-8). MOAB-2 did not detect APP or APP-CTFs in cell culture media/lysates (HEK-APPSwe or HEK-APPSwe/BACE1) or in brain homogenates from transgenic mice expressing 5 familial AD (FAD) mutation (5xFAD mice). Using IHC on 5xFAD brain tissue, MOAB-2 immunoreactivity co-localized with C-terminal antibodies specific for Aβ40 and Aβ42. MOAB-2 did not co-localize with either N- or C-terminal antibodies to APP. In addition, no MOAB-2-immunreactivity was observed in the brains of 5xFAD/BACE-/- mice, although significant amounts of APP were detected by N- and C-terminal antibodies to APP, as well as by 6E10. In both 5xFAD and 3xTg mouse brain tissue, MOAB-2 co-localized with cathepsin-D, a marker for acidic organelles, further evidence for intraneuronal Aβ, distinct from Aβ associated with the cell membrane. MOAB-2 demonstrated strong intraneuronal and extra-cellular immunoreactivity in 5xFAD and 3xTg mouse brain tissues. Both intraneuronal Aβ accumulation and extracellular Aβ deposition was demonstrated in 5xFAD mice and 3xTg mice with MOAB-2, an antibody that will help differentiate intracellular Aβ from APP. However, further investigation is required to determine whether a molecular mechanism links the presence of intraneuronal Aβ with neurotoxicity. As well, understanding the relevance of these observations to human AD patients is critical.

139 citations

Journal ArticleDOI
TL;DR: The results imply the possibility that axon mis-targeting may occur in adult neurogenic and/or regenerating neurons as a result of chronic Bace1 inhibition and add a note of caution to BACE1 inhibitor development.

139 citations

Journal ArticleDOI
TL;DR: Adopting a systematic nomenclature for the spectrum of clinical consequences of hyperbilirubinemia will help unify the field and promote more effective research in both prevention and treatment of KSDs.
Abstract: Background Despite its lengthy history, the study of jaundice, hyperbilirubinemia and kernicterus suffers from a lack of clarity and consistency in the key terms used to describe both the clinical and pathophysiological nature of these conditions. For example, the term Bilirubin-induced Neurological Dysfunction (BIND) has been used to refer to all neurological sequelae caused by exposure to high levels of bilirubin, to only mild neurological sequelae, or to scoring systems that quantitate the progressive stages of Acute Bilirubin Encephalopathy (ABE). Objective We seek to clarify and simplify terminology by introducing, defining, and proposing new terms and diagnostic criteria for kernicterus. Methods We propose a systematic nomenclature based on pathophysiological and clinical criteria, presenting a logical argument for each term. Acknowledging observations that kernicterus is symptomatically broad and diverse, we propose the use of the overarching term Kernicterus Spectrum Disorders (KSDs) to encompass all the neurological sequelae of bilirubin neurotoxicity including Acute Bilirubin Neurotoxicity (ABE). We further suggest subclassification of KSDs based on the principal disabling features of kernicterus (motor, auditory). Finally, we suggest the term subtle KSD to designate a child with a history of significant bilirubin neurotoxicity with mild or subtle developmental delays. Results and conclusion We conclude with a brief description of the limited treatments currently available for KSD, thereby underscoring the importance of further research. We believe that adopting a systematic nomenclature for the spectrum of clinical consequences of hyperbilirubinemia will help unify the field and promote more effective research in both prevention and treatment of KSDs.

109 citations

Journal ArticleDOI
TL;DR: Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2−/− mice, and data suggest that cAMP elevation uses an Epac 2-dependent pathway to promote transmitter release, and thatEpac2 is required to maintain the readily RELEASable pool at MF synapses in the hippocampus.
Abstract: Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2−/− mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2−/− mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.

56 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage, along with the implication of metal ions in AD.
Abstract: Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.

1,262 citations

Journal ArticleDOI
TL;DR: Although hopes are high that BACE1 inhibitors might be efficacious for the prevention or treatment of Alzheimer's disease, concerns have been raised about potential mechanism-based side-effects of these drugs.
Abstract: Summary The β secretase, widely known as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), initiates the production of the toxic amyloid β (Aβ) that plays a crucial early part in Alzheimer's disease pathogenesis. BACE1 is a prime therapeutic target for lowering cerebral Aβ concentrations in Alzheimer's disease, and clinical development of BACE1 inhibitors is being intensely pursued. Although BACE1 inhibitor drug development has proven challenging, several promising BACE1 inhibitors have recently entered human clinical trials. The safety and efficacy of these drugs are being tested at present in healthy individuals and patients with Alzheimer's disease, and will soon be tested in individuals with presymptomatic Alzheimer's disease. Although hopes are high that BACE1 inhibitors might be efficacious for the prevention or treatment of Alzheimer's disease, concerns have been raised about potential mechanism-based side-effects of these drugs. The potential of therapeutic BACE1 inhibition might prove to be a watershed in the treatment of Alzheimer's disease.

514 citations

Journal ArticleDOI
TL;DR: The postsynaptic density from human neocortex (hPSD) was isolated and 1,461 proteins were identified that were enriched in cognitive, affective and motor phenotypes underpinned by sets of genes.
Abstract: We isolated the postsynaptic density from human neocortex (hPSD) and identified 1,461 proteins. hPSD mutations cause 133 neurological and psychiatric diseases and were enriched in cognitive, affective and motor phenotypes underpinned by sets of genes. Strong protein sequence conservation in mammalian lineages, particularly in hub proteins, indicates conserved function and organization in primate and rodent models. The hPSD is an important structure for nervous system disease and behavior.

462 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of progress in the development of BACE1 inhibitor drugs and the evaluation of their therapeutic potential for AD and proposes a therapeutic window that balances safety and efficacy.
Abstract: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for the production of the neurotoxic β-amyloid (Aβ) peptide that is widely considered to have a crucial early role in the etiology of Alzheimer’s disease (AD). As a result, BACE1 has emerged as a prime drug target for reducing the levels of Aβ in the AD brain, and the development of BACE1 inhibitors as therapeutic agents is being vigorously pursued. It has proven difficult for the pharmaceutical industry to design BACE1 inhibitor drugs that pass the blood–brain barrier, however this challenge has recently been met and BACE1 inhibitors are now in human clinical trials to test for safety and efficacy in AD patients and individuals with pre-symptomatic AD. Initial results suggest that some of these BACE1 inhibitor drugs are well tolerated, although others have dropped out because of toxicity and it is still too early to know whether any will be effective for the prevention or treatment of AD. Additionally, based on newly identified BACE1 substrates and phenotypes of mice that lack BACE1, concerns have emerged about potential mechanism-based side effects of BACE1 inhibitor drugs with chronic administration. It is hoped that a therapeutic window can be achieved that balances safety and efficacy. This review summarizes the current state of progress in the development of BACE1 inhibitor drugs and the evaluation of their therapeutic potential for AD.

355 citations