scispace - formally typeset
Search or ask a question
Author

Sebastian Engelstaedter

Bio: Sebastian Engelstaedter is an academic researcher from University of Oxford. The author has contributed to research in topics: Haboob & Mineral dust. The author has an hindex of 19, co-authored 34 publications receiving 2941 citations. Previous affiliations of Sebastian Engelstaedter include Cornell University & Max Planck Society.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a review of the understanding of dust source regions, the variability of dust emissions, climatic controls of dust entrainment and transport, the role of human impact on dust emission, and recent developments of global and regional dust models.

593 citations

Journal ArticleDOI
TL;DR: The results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in the authors' understanding.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present observational estimates of desert dust based on pa- leodata proxies showing a doubling of the amount of dust during the 20th century over much, but not all the globe.
Abstract: Desert dust perturbs climate by directly and in- directly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and tempera- ture, in addition to modifying ocean and land biogeochem- istry. While we know that desert dust is sensitive to pertur- bations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on pa- leodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these ob- servational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of at- mosphere) over the 20th century to be 0.14± 0.11 W/m 2 (1990-1999 vs. 1905-1914). The estimated radiative change

372 citations

Journal ArticleDOI
Abstract: [1] Dust emitted from desert regions and transported in the atmosphere has been recognized for its potential to alter the Earth's climate and environments. Satellite data show that the largest source regions of dust (i.e., hot spots) are located in dry, nonvegetated areas of West Africa and central Chad. Dust emissions from these sources follow a distinct seasonal cycle. Whereas our understanding of processes controlling the dust cycle of the Chad dust source has been improved through recent studies, our understanding of the West African sources is limited because of the remoteness of the sources and lack of surface observations. Using a satellite-derived dust index and reanalysis atmospheric fields, we show that the annual dust cycle at the West African dust hot spots is not related to changes in mean surface wind strength but is linked to small-scale high-wind events. We find that the annual dust cycle correlates well with changes in near-surface convergence associated with the annual north-south movement of the Inter-Tropical Convergence Zone (ITCZ). Dust emissions in West Africa are highest in June coinciding with the crossing of the convergence zone on its northward bound over the dust hot spots. The increase in convergence leads to enhanced surface gustiness suggesting that dry convection associated with an increase in the occurrence of small-scale high-wind events and vertical velocity are the main processes controlling the annual dust cycle at the West African dust sources.

242 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the Bodele Field Experiment (BoDEx 2005) which took place during February and March 2005 and present the first surface-based measurements of the circulation over the bodele.
Abstract: Dust plays an important role in climate, recognition of which has led to a concentrated research effort in field campaigns, development and analysis of remotely sensed data, and modeling to better understand dust. There have, however, been very few direct surface-based field measurements from key dust source regions. The Bodele, Chad, has been shown to be one of the premier sources of dust in the world. This paper reports on the Bodele Field Experiment (BoDEx 2005) which took place during February and March 2005 and presents the first surface-based measurements of the circulation over the Bodele. On the basis of Pilot Balloon and AWS data, we confirm the existence of the Bodele Low Level Jet (LLJ) and show that winds undergo a strong diurnal cycle such that strongest surface winds typically occur in the midmorning when momentum is mixed downward in turbulence induced by radiative heating. In contrast, the core of the LLJ, near 500 m, peaks during the evening and is weakest during the day. The LLJ was present on all days during BoDEx 2005, but winds at the surface reached speeds necessary for large-scale dust entrainment on only a few days. The winds strength during the main dust plume event of BoDEx (10–12 March 2005) was in the bottom third of March plume events of the last 4 years. Pathways of dust transport from the Bodele using a trajectory model show potential advection of dust over the west African coastline within 5 days.

226 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Book ChapterDOI
01 Jan 2014
TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
Abstract: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2. This human-caused creation of reactive nitrogen in 2010 is at least 2 times larger than the rate of natural terrestrial creation of ~58 TgN (50 to 100 TgN yr−1) (Table 6.9, Section 1a). Note that the estimate of natural terrestrial biological fixation (58 TgN yr−1) is lower than former estimates (100 TgN yr−1, Galloway et al., 2004), but the ranges overlap, 50 to 100 TgN yr−1 vs. 90 to 120 TgN yr−1, respectively). Of this created reactive nitrogen, NOx and NH3 emissions from anthropogenic sources are about fourfold greater than natural emissions (Table 6.9, Section 1b). A greater portion of the NH3 emissions is deposited to the continents rather than to the oceans, relative to the deposition of NOy, due to the longer atmospheric residence time of the latter. These deposition estimates are lower limits, as they do not include organic nitrogen species. New model and measurement information (Kanakidou et al., 2012) suggests that incomplete inclusion of emissions and atmospheric chemistry of reduced and oxidized organic nitrogen components in current models may lead to systematic underestimates of total global reactive nitrogen deposition by up to 35% (Table 6.9, Section 1c). Discharge of reactive nitrogen to the coastal oceans is ~45 TgN yr−1 (Table 6.9, Section 1d). Denitrification converts Nr back to atmospheric N2. The current estimate for the production of atmospheric N2 is 110 TgN yr−1 (Bouwman et al., 2013).

1,967 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude.
Abstract: We present and discuss a new dataset of gridded emissions covering the historical period (1850–2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations.

1,953 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reveal two broad regimes of phytoplankton nutrient limitation in the modern upper ocean: Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow.
Abstract: Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

1,516 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.

1,347 citations