scispace - formally typeset
Search or ask a question
Author

Sebastian Gehrmann

Other affiliations: IBM, Bielefeld University, Massachusetts Institute of Technology  ...read more
Bio: Sebastian Gehrmann is an academic researcher from Google. The author has contributed to research in topics: Computer science & Language model. The author has an hindex of 26, co-authored 63 publications receiving 2233 citations. Previous affiliations of Sebastian Gehrmann include IBM & Bielefeld University.

Papers published on a yearly basis

Papers
More filters
Journal Article
TL;DR: A 540-billion parameter, densely activated, Transformer language model, which is called PaLM achieves breakthrough performance, outperforming the state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark.
Abstract: Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning , which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model (PaLM). We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

1,429 citations

Proceedings ArticleDOI
01 Jan 2018
TL;DR: This work explores the use of data-efficient content selectors to over-determine phrases in a source document that should be part of the summary, and shows that this approach improves the ability to compress text, while still generating fluent summaries.
Abstract: Neural summarization produces outputs that are fluent and readable, but which can be poor at content selection, for instance often copying full sentences from the source document This work explores the use of data-efficient content selectors to over-determine phrases in a source document that should be part of the summary We use this selector as a bottom-up attention step to constrain the model to likely phrases We show that this approach improves the ability to compress text, while still generating fluent summaries This two-step process is both simpler and higher performing than other end-to-end content selection models, leading to significant improvements on ROUGE for both the CNN-DM and NYT corpus Furthermore, the content selector can be trained with as little as 1,000 sentences making it easy to transfer a trained summarizer to a new domain

720 citations

Journal ArticleDOI
TL;DR: BLOOM as discussed by the authors is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total).
Abstract: Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.

407 citations

Journal Article
TL;DR: Evaluation of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters finds that model performance and calibration both improve with scale, but are poor in absolute terms.
Abstract: Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit"breakthrough"behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.

376 citations

Journal ArticleDOI
TL;DR: This work presents LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics, and describes the domain, the different stakeholders, and their goals and tasks.
Abstract: Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.

287 citations


Cited by
More filters
Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Proceedings ArticleDOI
01 Oct 2020
TL;DR: Transformers is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers.

4,798 citations

Posted Content
TL;DR: The \textit{Transformers} library is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. \textit{Transformers} is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. \textit{Transformers} is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at \url{this https URL}.

3,463 citations

Posted Content
TL;DR: This article showed that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

1,886 citations

Proceedings ArticleDOI
04 Mar 2022
TL;DR: The results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent and showing improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets.
Abstract: Making language models bigger does not inherently make them better at following a user's intent. For example, large language models can generate outputs that are untruthful, toxic, or simply not helpful to the user. In other words, these models are not aligned with their users. In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through the OpenAI API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent.

1,704 citations