scispace - formally typeset
Search or ask a question
Author

Sebastian Hänke

Bio: Sebastian Hänke is an academic researcher from University of Göttingen. The author has contributed to research in topics: Biodiversity & Species richness. The author has an hindex of 4, co-authored 5 publications receiving 1059 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.
Abstract: Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid-parasitoid and parasitoid-hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid-parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity-ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid-host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.

98 citations

Journal ArticleDOI
TL;DR: The results illustrate that environmental homogenisation due to AI does not necessarily induce spatio‐temporal homogenisations of communities, but rather can have contrasting effects on more specialised, low‐dispersive parasitoids versus more generalised, high‐ Dispersive predators, thereby demonstrating great differences in the predictability of responses to AI among aphid natural enemies.
Abstract: Agricultural intensification (AI) is a great threat to biodiversity and its negative effects on species richness of different communities have been repeatedly shown. The effects of AI on community composition and variability, however, are important for assessing the predictability of community responses, but have rarely been studied simultaneously and across different taxonomic groups. In this study, we focused on parasitoids (primary and secondary) and predators (hoverflies and carabid beetles) of aphids in winter wheat fields with contrasting AI regimes (low AI, i.e. organic fields in structurally complex landscapes vs. high AI, i.e. conventional fields in structurally simple landscapes). We found divergence in species composition of more specialised, low-dispersing primary and secondary parasitoids within high AI fields, probably due to the disruption of the exchanges of species between local populations in structurally simple landscapes. In contrast, species composition of less specialised, highly dispersing carabid beetles and hoverflies converged in fields with high AI, where they were characterised by the dominance of a single, vagile species adapted to high land-use conditions. Furthermore, temporal community shifts were only pronounced in primary parasitoids and hoverflies, with higher temporal changes in fields with high AI in primary parasitoids. Collectively, our results illustrate that environmental homogenisation due to AI does not necessarily induce spatio-temporal homogenisation of communities, but rather can have contrasting effects on more specialised, low-dispersive parasitoids versus more generalised, high-dispersive predators, thereby demonstrating great differences in the predictability of responses to AI among aphid natural enemies.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors argue that the true value of functional biodiversity on the farm is often inadequately acknowledged or understood, while conventional intensification tends to disrupt beneficial functions of biodiversity.

1,463 citations

Journal ArticleDOI
TL;DR: Although organic agriculture has an untapped role to play when it comes to the establishment of sustainable farming systems, no single approach will safely feed the planet and a blend of organic and other innovative farming systems is needed.
Abstract: Organic agriculture has a history of being contentious and is considered by some as an inefficient approach to food production. Yet organic foods and beverages are a rapidly growing market segment in the global food industry. Here, we examine the performance of organic farming in light of four key sustainability metrics: productivity, environmental impact, economic viability and social wellbeing. Organic farming systems produce lower yields compared with conventional agriculture. However, they are more profitable and environmentally friendly, and deliver equally or more nutritious foods that contain less (or no) pesticide residues, compared with conventional farming. Moreover, initial evidence indicates that organic agricultural systems deliver greater ecosystem services and social benefits. Although organic agriculture has an untapped role to play when it comes to the establishment of sustainable farming systems, no single approach will safely feed the planet. Rather, a blend of organic and other innovative farming systems is needed. Significant barriers exist to adopting these systems, however, and a diversity of policy instruments will be required to facilitate their development and implementation.

959 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the literature that compares biologically diversified farming systems with conventional farming systems, and examined 12 ecosystem services: biodiversity; soil quality; nutrient management; water-holding capacity; control of weeds, diseases, and pests; pollination services; carbon sequestration; energy efficiency and reduction of warming potential; resistance and resilience to climate change; and crop productivity.
Abstract: We hypothesize that biological diversification across ecological, spatial, and temporal scales maintains and regenerates the ecosystem services that provide critical inputs-such as maintenance of soil quality, nitrogen fixation, pollination, and pest control-to agriculture. Agrobiodiversity is sustained by diversified farming practices and it also supplies multiple ecosystem services to agriculture, thus reducing environmental externalities and the need for off-farm inputs. We reviewed the literature that compares biologically diversified farming systems with conventional farming systems, and we examined 12 ecosystem services: biodiversity; soil quality; nutrient management; water-holding capacity; control of weeds, diseases, and pests; pollination services; carbon sequestration; energy efficiency and reduction of warming potential; resistance and resilience to climate change; and crop productivity. We found that compared with conventional farming systems, diversified farming systems support substantially greater biodiversity, soil quality, carbon sequestration, and water-holding capacity in surface soils, energy-use efficiency, and resistance and resilience to climate change. Relative to conventional monocultures, diversified farming systems also enhance control of weeds, diseases, and arthropod pests and they increase pollination services; however, available evidence suggests that these practices may often be insufficient to control pests and diseases or provide sufficient pollination. Significantly less public funding has been applied to agroecological research and the improvement of diversified farming systems than to conventional systems. Despite this lack of support, diversified farming systems have only somewhat reduced mean crop productivity relative to conventional farming systems, but they produce far fewer environmental and social harms. We recommend that more research and crop breeding be conducted to improve diversified farming systems and reduce yield gaps when they occur. Because single diversified farming system practices, such as crop rotation, influence multiple ecosystem services, such research should be holistic and integrated across many components of the farming system. Detailed agroecological research especially is needed to develop crop- and region-specific approaches to control of weeds, diseases, and pests. © 2012 by the author(s).

778 citations

Journal ArticleDOI
17 Jul 2014-Nature
TL;DR: The hypothesis that the most widely used neonicotinoid insecticide, imidacloprid, has a negative impact on insectivorous bird populations is investigated and it is shown that, in the Netherlands, local population trends were significantly more negative in areas with higher surface-water concentrations of imidcloprid.
Abstract: Recent studies have shown that neonicotinoid insecticides have adverse effects on non-target invertebrate species. Invertebrates constitute a substantial part of the diet of many bird species during the breeding season and are indispensable for raising offspring. We investigated the hypothesis that the most widely used neonicotinoid insecticide, imidacloprid, has a negative impact on insectivorous bird populations. Here we show that, in the Netherlands, local population trends were significantly more negative in areas with higher surface-water concentrations of imidacloprid. At imidacloprid concentrations of more than 20 nanograms per litre, bird populations tended to decline by 3.5 per cent on average annually. Additional analyses revealed that this spatial pattern of decline appeared only after the introduction of imidacloprid to the Netherlands, in the mid-1990s. We further show that the recent negative relationship remains after correcting for spatial differences in land-use changes that are known to affect bird populations in farmland. Our results suggest that the impact of neonicotinoids on the natural environment is even more substantial than has recently been reported and is reminiscent of the effects of persistent insecticides in the past. Future legislation should take into account the potential cascading effects of neonicotinoids on ecosystems.

766 citations