scispace - formally typeset
Search or ask a question
Author

Sebastian Thrun

Other affiliations: University of Pittsburgh, ETH Zurich, Carnegie Mellon University  ...read more
Bio: Sebastian Thrun is an academic researcher from Stanford University. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 146, co-authored 434 publications receiving 98124 citations. Previous affiliations of Sebastian Thrun include University of Pittsburgh & ETH Zurich.


Papers
More filters
Proceedings ArticleDOI
09 May 2011
TL;DR: This work introduces a convenient technique for mapping traffic light locations from recorded video data using tracking, back-projection, and triangulation, and is the first to account for multiple lights per intersection, which yields superior results by probabilistically combining evidence from all available lights.
Abstract: Detection of traffic light state is essential for autonomous driving in cities. Currently, the only reliable systems for determining traffic light state information are non-passive proofs of concept, requiring explicit communication between a traffic signal and vehicle. Here, we present a passive camera-based pipeline for traffic light state detection, using (imperfect) vehicle localization and assuming prior knowledge of traffic light location. First, we introduce a convenient technique for mapping traffic light locations from recorded video data using tracking, back-projection, and triangulation. In order to achieve robust real-time detection results in a variety of lighting conditions, we combine several probabilistic stages that explicitly account for the corresponding sources of sensor and data uncertainty. In addition, our approach is the first to account for multiple lights per intersection, which yields superior results by probabilistically combining evidence from all available lights. To evaluate the performance of our method, we present several results across a variety of lighting conditions in a real-world environment. The techniques described here have for the first time enabled our autonomous research vehicle to successfully navigate through traffic-light-controlled intersections in real traffic.

177 citations

Proceedings ArticleDOI
06 Jul 2004
TL;DR: A probabilistic framework for detection and modeling of doors from sensor data acquired in corridor environments with mobile robots is described, which achieves better results than models that only capture behavior, or only capture appearance.
Abstract: We describe a probabilistic framework for detection and modeling of doors from sensor data acquired in corridor environments with mobile robots. The framework captures shape, color, and motion properties of door and wall objects. The probabilistic model is optimized with a version of the expectation maximization algorithm, which segments the environment into door and wall objects and learns their properties. The framework allows the robot to generalize the properties of detected object instances to new object instances. We demonstrate the algorithm on real-world data acquired by a Pioneer robot equipped with a laser range finder and an omni-directional camera. Our results show that our algorithm reliably segments the environment into walls and doors, finding both doors that move and doors that do not move. We show that our approach achieves better results than models that only capture behavior, or only capture appearance.

177 citations

Book ChapterDOI
07 Oct 2012
TL;DR: This paper derives an algorithm for tracking human pose in real-time from depth sequences based on MAP inference in a probabilistic temporal model by modeling the constraint that the observed subject cannot enter free space, the area of space in front of the true range measurements.
Abstract: Tracking human pose in real-time is a difficult problem with many interesting applications. Existing solutions suffer from a variety of problems, especially when confronted with unusual human poses. In this paper, we derive an algorithm for tracking human pose in real-time from depth sequences based on MAP inference in a probabilistic temporal model. The key idea is to extend the iterative closest points (ICP) objective by modeling the constraint that the observed subject cannot enter free space, the area of space in front of the true range measurements. Our primary contribution is an extension to the articulated ICP algorithm that can efficiently enforce this constraint. The resulting filter runs at 125 frames per second using a single desktop CPU core. We provide extensive experimental results on challenging real-world data, which show that the algorithm outperforms the previous state-of-the-art trackers both in computational efficiency and accuracy.

176 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This work presents a flexible method for fusing information from optical and range sensors based on an accelerated high-dimensional filtering approach, and describes how to integrate priors on object motion and appearance and how to achieve an efficient implementation using parallel processing hardware such as GPUs.
Abstract: We present a flexible method for fusing information from optical and range sensors based on an accelerated high-dimensional filtering approach. Our system takes as input a sequence of monocular camera images as well as a stream of sparse range measurements as obtained from a laser or other sensor system. In contrast with existing approaches, we do not assume that the depth and color data streams have the same data rates or that the observed scene is fully static. Our method produces a dense, high-resolution depth map of the scene, automatically generating confidence values for every interpolated depth point. We describe how to integrate priors on object motion and appearance and how to achieve an efficient implementation using parallel processing hardware such as GPUs.

175 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: This work proposes an integrated multi-view sensor fusion approach that combines information from multiple color cameras and multiple ToF depth sensors to obtain high quality dense and detailed 3D models of scenes challenging for stereo alone, while simultaneously reducing complex noise of ToF sensors.
Abstract: Multi-view stereo methods frequently fail to properly reconstruct 3D scene geometry if visible texture is sparse or the scene exhibits difficult self-occlusions Time-of-Flight (ToF) depth sensors can provide 3D information regardless of texture but with only limited resolution and accuracy To find an optimal reconstruction, we propose an integrated multi-view sensor fusion approach that combines information from multiple color cameras and multiple ToF depth sensors First, multi-view ToF sensor measurements are combined to obtain a coarse but complete model Then, the initial model is refined by means of a probabilistic multi-view fusion framework, optimizing over an energy function that aggregates ToF depth sensor information with multi-view stereo and silhouette constraints We obtain high quality dense and detailed 3D models of scenes challenging for stereo alone, while simultaneously reducing complex noise of ToF sensors

174 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations