scispace - formally typeset
Search or ask a question
Author

Sebastian Thrun

Other affiliations: University of Pittsburgh, ETH Zurich, Carnegie Mellon University  ...read more
Bio: Sebastian Thrun is an academic researcher from Stanford University. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 146, co-authored 434 publications receiving 98124 citations. Previous affiliations of Sebastian Thrun include University of Pittsburgh & ETH Zurich.


Papers
More filters
Patent
25 Jul 2007
TL;DR: In this paper, a pose deformation space model encoding variability in pose and shape is learned from a 3D dataset and combined with a learned body shape model for motion capture animation, shape completion and markerless motion capture.
Abstract: Motion capture animation, shape completion and markerless motion capture methods are provided. A pose deformation space model encoding variability in pose is learnt from a three-dimensional (3D) dataset. Body shape deformation space model encoding variability in pose and shape is learnt from another 3D dataset. The learnt pose model is combined with the learnt body shape model. For motion capture animation, given parameter set, the combined model generates a 3D shape surface of a body in a pose and shape. For shape completion, given partial surface of a body defined as 3D points, the combined model generates a 3D surface model in the combined spaces that fits the 3D points. For markerless motion capture, given 3D information of a body, the combined model traces the movement of the body using the combined spaces that fits the 3D information or reconstructing the body's shape or deformations that fits the 3D information.

91 citations

Book ChapterDOI
01 May 1998
TL;DR: To increase robustness of machine learning approaches, methods are desirable that can reason about the relatedness of individual learning tasks, in order to avoid the danger arising from tasks that are unrelated and thus potentially misleading.
Abstract: Recently, there has been an increased interest in machine learning methods that transfer knowledge across multiple learning tasks and “learn to learn.” Such methods have repeatedly been found to outperform conventional, single-task learning algorithms when the learning tasks are appropriately related. To increase robustness of such approaches, methods are desirable that can reason about the relatedness of individual learning tasks, in order to avoid the danger arising from tasks that are unrelated and thus potentially misleading.

90 citations

Proceedings ArticleDOI
01 Oct 2011
TL;DR: This paper is meant as an overview of the recent object recognition work done on Stanford's autonomous vehicle and the primary challenges along this particular path.
Abstract: This paper is meant as an overview of the recent object recognition work done on Stanford’s autonomous vehicle and the primary challenges along this particular path. The eventual goal is to provide practical object recognition systems that will enable new robotic applications such as autonomous taxis that recognize hailing pedestrians, personal robots that can learn about specific objects in your home, and automated farming equipment that is trained on-site to recognize the plants and materials that it must interact with. Recent work has made some progress towards object recognition that could fulfill these goals, but advances in modelfree segmentation and tracking algorithms are required for applicability beyond scenarios like driving in which model-free segmentation is often available. Additionally, online learning may be required to make use of the large amounts of labeled data made available by tracking-based semi-supervised learning.

89 citations

Book ChapterDOI
01 Jan 2006
TL;DR: The goal of this project is to use robotic systems to rapidly acquire 3-D maps, which seamlessly integrate indoor and outdoor structures, based on an information-solution of the SLAM problem, which enables them to seamlessly integrate GPS, IMU, and scan data.
Abstract: This article present results for building accurate 3-D maps of urban environments with amobile SegwayRMP. The goal of this project is to use robotic systems to rapidly acquire 3-D maps, which seamlessly integrate indoor and outdoor structures. Our approach is based on an information-solution of the SLAM problem, which enables us to seamlessly integrate GPS, IMU, and scan data. 3-D models acquired by the robot are analyzed for navigability using a multi-grid approach, and visualized using a level set technique. Results are presented for a number of environments, some of which combine indoor and outdoor terrain.

88 citations

Book ChapterDOI
TL;DR: This paper uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion, and illustrates drastic improvements in localization speed and accuracy when compared to conventional single-robot localization.
Abstract: This paper presents a probabilistic algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The paper also describes experimental results obtained using two mobile robots. The robots detect each other and estimate their relative locations based on computer vision and laser range-finding. The results, obtained in an indoor office environment, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization.

88 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations