scispace - formally typeset
Search or ask a question
Author

Sebastian Thrun

Other affiliations: University of Pittsburgh, ETH Zurich, Carnegie Mellon University  ...read more
Bio: Sebastian Thrun is an academic researcher from Stanford University. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 146, co-authored 434 publications receiving 98124 citations. Previous affiliations of Sebastian Thrun include University of Pittsburgh & ETH Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that image mosaicing can be a powerful tool for widening the field of view and creating image maps of microanatomical structures and a global alignment algorithm that draws upon techniques commonly used in probabilistic robotics is presented.
Abstract: Recent advances in optical imaging have led to the development of miniature microscopes that can be brought to the patient for visualizing tissue structures in vivo. These devices have the potential to revolutionize health care by replacing tissue biopsy with in vivo pathology. One of the primary limitations of these microscopes, however, is that the constrained field of view can make image interpretation and navigation difficult. In this paper, we show that image mosaicing can be a powerful tool for widening the field of view and creating image maps of microanatomical structures. First, we present an efficient algorithm for pairwise image mosaicing that can be implemented in real time. Then, we address two of the main challenges associated with image mosaicing in medical applications: cumulative image registration errors and scene deformation. To deal with cumulative errors, we present a global alignment algorithm that draws upon techniques commonly used in probabilistic robotics. To accommodate scene deformation, we present a local alignment algorithm that incorporates deformable surface models into the mosaicing framework. These algorithms are demonstrated on image sequences acquired in vivo with various imaging devices including a hand-held dual-axes confocal microscope, a miniature two-photon microscope, and a commercially available confocal microendoscope.

83 citations

Proceedings Article
01 Jan 2003
TL;DR: A novel SLAM algorithm is presented that enables multiple vehicles to acquire a joint map, but which can cope with arbitrary latency and bandwidth limitations such as typically found in airborne vehicle applications.
Abstract: This paper addresses the problem of simultaneous localization and mapping (SLAM) for teams of collaborating vehicles where the communication bandwidth is limited. We present a novel SLAM algorithm that enables multiple vehicles to acquire a joint map, but which can cope with arbitrary latency and bandwidth limitations such as typically found in airborne vehicle applications. The key idea is to represent maps in information form (negative log-likelihood), and to selectively communicate subsets of the information tailored to the available communication resources. We show that our communication scheme preserves the consistency, which has important ramifications for data association problems. We also provide experimental results that illustrate the effectiveness of our approach in comparison with previous

80 citations

Proceedings ArticleDOI
03 May 2010
TL;DR: This work applies its approach to the task of autonomous sideways sliding into a parking spot, and shows that it can repeatedly and accurately control the system, placing the car within about 2 feet of the desired location; this represents the state of the art in terms of accurately controlling a vehicle in such a maneuver.
Abstract: We consider the task of accurately controlling a complex system, such as autonomously sliding a car sideways into a parking spot. Although certain regions of this domain are extremely hard to model (i.e., the dynamics of the car while skidding), we observe that in practice such systems are often remarkably deterministic over short periods of time, even in difficult-to-model regions. Motivated by this intuition, we develop a probabilistic method for combining closed-loop control in the well-modeled regions and open-loop control in the difficult-to-model regions. In particular, we show that by combining 1) an inaccurate model of the system and 2) a demonstration of the desired behavior, our approach can accurately and robustly control highly challenging systems, without the need to explicitly model the dynamics in the most complex regions and without the need to hand-tune the switching control law. We apply our approach to the task of autonomous sideways sliding into a parking spot, and show that we can repeatedly and accurately control the system, placing the car within about 2 feet of the desired location; to the best of our knowledge, this represents the state of the art in terms of accurately controlling a vehicle in such a maneuver.

80 citations

Proceedings ArticleDOI
03 Dec 2010
TL;DR: This paper finds experimentally that fusion of multiple sensor modalities is necessary for optimal performance and demonstrates sub-meter localization accuracy.
Abstract: The interpretation of uncertain sensor streams for localization is usually considered in the context of a robot Increasingly, however, portable consumer electronic devices, such as smartphones, are equipped with sensors including WiFi radios, cameras, and inertial measurement units (IMUs) Many tasks typically associated with robots, such as localization, would be valuable to perform on such devices In this paper, we present an approach for indoor localization exclusively using the low-cost sensors typically found on smartphones Environment modification is not needed We rigorously evaluate our method using ground truth acquired using a laser range scanner Our evaluation includes overall accuracy and a comparison of the contribution of individual sensors We find experimentally that fusion of multiple sensor modalities is necessary for optimal performance and demonstrate sub-meter localization accuracy

76 citations

Proceedings Article
07 Aug 2002
TL;DR: PolCA is proposed, a hierarchical probabilistic control algorithm which learns both subtask-specific state abstractions and policies and has been successfully implemented onboard a mobile robotic assistant deployed in a nursing facility.
Abstract: This paper presents a scalable control algorithm that enables a deployed mobile robot to make high-level control decisions under full consideration of its probabilistic belief. We draw on insights from the rich literature of structured robot controllers and hierarchical MDPs to propose PolCA, a hierarchical probabilistic control algorithm which learns both subtask-specific state abstractions and policies. The resulting controller has been successfully implemented onboard a mobile robotic assistant deployed in a nursing facility. To the best of our knowledge, this work is a unique instance of applying POMDPs to highlevel robotic control problems.

75 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations