scispace - formally typeset
Search or ask a question
Author

Sébastien Bonnet

Bio: Sébastien Bonnet is an academic researcher from Laval University. The author has contributed to research in topics: Pulmonary hypertension & Medicine. The author has an hindex of 54, co-authored 171 publications receiving 10254 citations. Previous affiliations of Sébastien Bonnet include University of Alberta & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The unique metabolic profile of cancer (aerobic glycolysis) might confer apoptosis resistance and be therapeutically targeted and the orally available DCA is a promising selective anticancer agent.

1,452 citations

Journal ArticleDOI
TL;DR: Recent findings in pathology and cellular mechanisms contributing to the onset and progression of pulmonary vascular remodelling associated with various forms of pulmonary hypertension are reviewed and ways to improve management and to support and optimise drug development are discussed.
Abstract: Clinical and translational research has played a major role in advancing our understanding of pulmonary hypertension (PH), including pulmonary arterial hypertension and other forms of PH with severe vascular remodelling (e.g. chronic thromboembolic PH and pulmonary veno-occlusive disease). However, PH remains an incurable condition with a high mortality rate, underscoring the need for a better transfer of novel scientific knowledge into healthcare interventions. Herein, we review recent findings in pathology (with the questioning of the strict morphological categorisation of various forms of PH into pre- or post-capillary involvement of pulmonary vessels) and cellular mechanisms contributing to the onset and progression of pulmonary vascular remodelling associated with various forms of PH. We also discuss ways to improve management and to support and optimise drug development in this research field.

702 citations

Journal ArticleDOI
TL;DR: An intersection between oxygen-sensing mechanisms and PAH is revealed, analogous to the pathophysiology of chronically hypoxic Sprague-Dawley rats, and the mitochondria-ROS-HIF-Kv pathway offers new targets for PAH therapy.
Abstract: Background— The cause of pulmonary arterial hypertension (PAH) was investigated in humans and fawn hooded rats (FHR), a spontaneously pulmonary hypertensive strain. Methods and Results— Serial Doppler echocardiograms and cardiac catheterizations were performed in FHR and FHR/BN1, a consomic control that is genetically identical except for introgression of chromosome 1. PAH began after 20 weeks of age, causing death by &60 weeks. FHR/BN1 did not develop PAH. FHR pulmonary arterial smooth muscle cells (PASMCs) had a rarified reticulum of hyperpolarized mitochondria with reduced expression of electron transport chain components and superoxide dismutase-2. These mitochondrial abnormalities preceded PAH and persisted in culture. Depressed mitochondrial reactive oxygen species (ROS) production caused normoxic activation of hypoxia inducible factor (HIF-1α), which then inhibited expression of oxygen-sensitive, voltage-gated K+ channels (eg, Kv1.5). Disruption of this mitochondrial-HIF-Kv pathway impaired oxygen ...

533 citations

Journal ArticleDOI
TL;DR: Reduced miR-204 expression facilitates the excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells characteristic of human pulmonary arterial hypertension.
Abstract: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease.

475 citations

Journal ArticleDOI
TL;DR: It is shown that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality.
Abstract: The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone morphogenetic protein axis and selective downregulation of PA smooth muscle cell (PASMC) voltage-gated K channels, including Kv1.5. The Kv downregulation-induced increase in (K)i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria control apoptosis and produce activated oxygen species like H2O2, which regulate vascular tone by activating K channels, but their role in PAH is unknown. We show that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality. Compared with MCT-PAH, DCA-treated rats (80 mg/kg per day in drinking water on day 14 after MCT, studied on day 21) have decreased pulmonary, but not systemic, vascular resistance (63% decrease, P0.002), PA medial thickness (28% decrease, P0.0001), and right ventricular hypertrophy (34% decrease, P0.001). DCA is similarly effective when given at day 1 or day 21 after MCT (studied day 28) but has no effect on normal rats. DCA depolarizes MCT-PAH PASMC mitochondria and causes release of H 2O2 and cytochrome c, inducing a 10-fold increase in apoptosis within the PA media (TUNEL and caspase 3 activity) and decreasing proliferation (proliferating-cell nuclear antigen and BrdU assays). Immunoblots, immunohistochemistry, laser-captured microdissection-quantitative reverse-transcription polymerase chain reaction and patch-clamping show that DCA reverses the Kv1.5 downregulation in resistance PAs. In summary, DCA reverses PA remodeling by increasing the mitochondria-dependent apoptosis/proliferation ratio and upregulating Kv1.5 in the media. We identify mitochondria- dependent apoptosis as a potential target for therapy and DCA as an effective and selective treatment for PAH. (Circ Res. 2004;95:830-840.)

442 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: A relatively high mortality of severe coronavirus disease 2019 (COVID‐19) is worrying, and the application of heparin in CO VID‐19 has been recommended by some expert consensus because of the risk of disseminated intravascular coagulation and venous thromboembolism, but its efficacy remains to be validated.

2,898 citations

Journal ArticleDOI
01 May 2009-Cell
TL;DR: Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision that must be understood if the next generation of drugs that selectively activate or inhibit p53 are to be exploited efficiently.

2,775 citations

Journal ArticleDOI
03 Feb 2012-Cell
TL;DR: Oxygen homeostasis represents an organizing principle for understanding metazoan evolution, development, physiology, and pathobiology and rapid progress is being made in elucidating homeostatic roles of HIFs in many physiological systems, determining pathological consequences of H IF dysregulation in chronic diseases, and investigating potential targeting of Hifs for therapeutic purposes.

2,450 citations