scispace - formally typeset
Search or ask a question
Author

Sébastien Le Mével

Other affiliations: University of Paris
Bio: Sébastien Le Mével is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Xenopus & Metamorphosis. The author has an hindex of 11, co-authored 16 publications receiving 524 citations. Previous affiliations of Sébastien Le Mével include University of Paris.

Papers
More filters
Journal ArticleDOI
TL;DR: This noninvasive technology using an automatic reading system shows low variability and permits detection of subtle changes in signaling by EDCs that either inhibit or activate TH signaling in vivo.
Abstract: There is a pressing need for high throughput methods to assess potential effects of endocrine disrupting chemicals (EDCs). released into the environment. Currently our ability to identify effects in vitro exceeds that for in vivo monitoring. However, only in vivo analysis provides the full spectrum of physiological impacts exerted by a given chemical. With the aim of finding a physiological system compatible with automatic plate reading we tested the capacity of early embryonic stage Xenopus laevis tadpoles to monitor thyroid hormone (TH) disruption. Fluorescent transgenic X. laevis embryos bearing a TH/bZIP-eGFP construct, placed in 96 well plates, were used for a physiological-based screen for potential TH signaling disruptors. Using stage NF-45 embryos (time of thyroid gland formation) allowed rapid detection of chemical interference with both peripheral TR signaling and production of endogenous TH. Nanomolar concentrations of TH receptor agonists could be detected within 72 h. Moreover, when testing against a 5nM T3 challenge, the effects of inhibitors of TH production were revealed, including inhibitors of TH synthesis, (methimazole: 1 mM or sodium perchlorate: 3.56 microM), as well as antagonists acting at the receptor level (NH3: 2 microM) and a deiodinase inhibitor (iopanoic acid: 10 microM). Finally, we show that the thyroid disrupting activities of BPA (10 microM) and TBBPA (1 microM) can also be detected in this rapid screening protocol. Finally, this noninvasive technology using an automatic reading system shows low variability (around 5%) and permits detection of subtle changes in signaling by EDCs that either inhibit or activate TH signaling in vivo.

118 citations

Journal ArticleDOI
TL;DR: It is concluded that Xenopus is an excellent vertebrate model for biotransformation studies, displaying homologous pathways to mammals, and perturbation of thyroid signaling by TBBPA is likely due to rapid direct action of the parent compound.

69 citations

Journal ArticleDOI
TL;DR: A role of unliganded TR in eye development is revealed using an amphibian model based on a Xenopus laevis TR β mutant construct ineffective for gene repression owing to impaired corepressor NCoR recruitment.
Abstract: Thyroid hormone receptors generally activate transcription of target genes in the presence of thyroid hormone (T3) and repress their transcription in its absence. Here, we investigated the role of unliganded thyroid hormone receptor (TR) during vertebrate development using an amphibian model. Previous studies led to the hypothesis that before production of endogenous T3, the presence of unliganded receptor is essential for premetamorphic tadpole growth. To test this hypothesis, we generated a Xenopus laevis TR β mutant construct ineffective for gene repression owing to impaired corepressor NCoR recruitment. Overexpression by germinal transgenesis of the mutant receptor leads to lethality during early development with numerous defects in cranio-facial and eye development. These effects correlate with TR expression profiles at these early stages. Molecular analysis of transgenic mutants reveals perturbed expression of genes involved in eye development. Finally, treatment with iopanoic acid or NH-3, modulators of thyroid hormone action, leads to abnormal eye development. In conclusion, the data reveal a role of unliganded TR in eye development.

64 citations

Journal ArticleDOI
TL;DR: GFP-xR11 significantly prolonged Rohon-Beard neuron survival up to the climax of metamorphosis, even in the regressing tadpole tail, whereas in controls these neurons disappeared in early metamorphoses, and offers approaches to further analyze programmed neuronal turnover during postembryonic development.
Abstract: Amphibian metamorphosis involves extensive, but selective, neuronal death and turnover, thus sharing many features with mammalian postnatal development. The antiapoptotic protein Bcl-XL plays an important role in postnatal mammalian neuronal survival. It is therefore of interest that accumulation of the mRNA encoding the Xenopus Bcl-XL homologue, termed xR11, increases abruptly in the nervous system, but not in other tissues, during metamorphosis in Xenopus tadpoles. This observation raises the intriguing possibility that xR11 selectively regulates neuronal survival during postembryonic development. To investigate this hypothesis, we overexpressed xR11 in vivo as a green fluorescent protein (GFP)-xR11 fusion protein by using somatic and germinal transgenesis. Somatic gene transfer showed that the fusion protein was effective in counteracting, in a dose-dependent manner, the proapoptotic effects of coexpressed Bax. When GFP-xR11 was expressed from the neuronal β-tubulin promoter by germinal transgenesis we observed neuronal specific expression that was maintained throughout metamorphosis and beyond, into juvenile and adult stages. Confocal microscopy showed GFP-xR11 to be exclusively localized in the mitochondria. Our findings show that GFP-xR11 significantly prolonged Rohon-Beard neuron survival up to the climax of metamorphosis, even in the regressing tadpole tail, whereas in controls these neurons disappeared in early metamorphosis. However, GFP-xR11 expression did not modify the fate of spinal cord motoneurons. The selective protection of Rohon-Beard neurons reveals cell-specific apoptotic pathways and offers approaches to further analyze programmed neuronal turnover during postembryonic development.

52 citations

Journal ArticleDOI
TL;DR: This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.
Abstract: The histone code, notably H3 methylation, contributes to the precise control of gene expression that underlies complex physiological T3 responses.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla.
Abstract: This review provides a critical analysis of the biological effects of the most widely used plasticizers, including dibutyl phthalate, diethylhexyl phthalate, dimethyl phthalate, butyl benzyl phthalate and bisphenol A (BPA), on wildlife, with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians. Moreover, the paper provides novel data on the biological effects of some of these plasticizers in invertebrates, fish and amphibians. Phthalates and BPA have been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. Molluscs, crustaceans and amphibians appear to be especially sensitive to these compounds, and biological effects are observed at environmentally relevant exposures in the low ng l−1 to µg l−1 range. In contrast, most effects in fish (except for disturbance in spermatogenesis) occur at higher concentrations. Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption. Effect concentrations of plasticizers in laboratory experiments coincide with measured environmental concentrations, and thus there is a very real potential for effects of these chemicals on some wildlife populations. The most striking gaps in our current knowledge on the impacts of plasticizers on wildlife are the lack of data for long-term exposures to environmentally relevant concentrations and their ecotoxicity when part of complex mixtures. Furthermore, the hazard of plasticizers has been investigated in annelids, molluscs and arthropods only, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla.

697 citations

Journal ArticleDOI
TL;DR: In this article, it was found that CuFe 2 O 4 magnetic nanoparticles (MNPs) could effectively catalyze peroxymonosulfate (PMS) to generate sulfate radicals (SO 4 − ) to degrade tetrabromobisphenol A (TBBPA).
Abstract: CuFe 2 O 4 magnetic nanoparticles (MNPs) were prepared by sol–gel combustion method with copper and iron nitrates as metal precursors and citrate acid as a complex agent. The obtained CuFe 2 O 4 MNPs were characterized by scanning electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy and X-ray photoelectron spectroscopy. It was found that CuFe 2 O 4 MNPs could effectively catalyze peroxymonosulfate (PMS) to generate sulfate radicals (SO 4 − ) to degrade tetrabromobisphenol A (TBBPA). The added TBBPA (10 mg L −1 ) was almost completely removed (with a removal of 99%) in 30 min by using 0.1 g L −1 CuFe 2 O 4 MNPs and 0.2 mmol L −1 PMS. With higher addition of PMS (1.5 mmol L −1 ), the degradation yielded a TOC removal of 56% and a TBBPA debromination ratio of 67%. The effect of catalyst calcination temperature, catalyst load, PMS concentration and reaction temperature was investigated on the catalytic activity of CuFe 2 O 4 MNPs. The highly catalytic activity of CuFe 2 O 4 MNPs possibly involved the activation of PMS by both Cu(II) and Fe(III) in CuFe 2 O 4 MNPs. Based on intermediate detections, the degradation pathway of TBBPA in the CuFe 2 O 4 MNPs/PMS system was proposed.

556 citations

Journal ArticleDOI
TL;DR: There is now reasonably firm evidence that PCBs have thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties.

511 citations

Book ChapterDOI
TL;DR: A dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.
Abstract: Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.

439 citations

Journal ArticleDOI
TL;DR: This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassay for routine monitoring.
Abstract: Thousands of organic micropollutants and their transformation products occur in water Although often present at low concentrations, individual compounds contribute to mixture effects Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water) Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response) This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring

365 citations