scispace - formally typeset
Search or ask a question
Author

Segeun Jang

Bio: Segeun Jang is an academic researcher from Kookmin University. The author has contributed to research in topics: Membrane & Electrolyte. The author has an hindex of 14, co-authored 39 publications receiving 535 citations. Previous affiliations of Segeun Jang include Seoul National University & Hanbat National University.

Papers
More filters
Journal ArticleDOI
01 May 2016-Small
TL;DR: A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time.
Abstract: A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time. Power conversion efficiency of the moth-eye patterned perovskite solar cell is improved by ≈11%, which mainly results from increasing light harvesting efficiency by structural optical property.

129 citations

Journal ArticleDOI
TL;DR: A simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures.
Abstract: The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.

65 citations

Journal ArticleDOI
TL;DR: This is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects, and mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
Abstract: We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

52 citations

Journal ArticleDOI
TL;DR: This work reports a facile fabrication method for constructing multifunctional moth-eye TiO2/polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer to achieve a desired multiscale-patterned surface.
Abstract: This work reports a facile fabrication method for constructing multifunctional moth-eye TiO2/polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer. Mesoporous TiO2 nanoparticles act as an effective UV filter, completely blocking high-energy UVB light and partially blocking UVA light and forming a robust TiO2/PDMS composite pad by allowing the PDMS solution to easily fill the porous TiO2 network. The paraboloid-shaped moth-eye nanostructures provided high transparency in the visible spectrum and also have self-cleaning effects because of nanoroughness on the surface. Furthermore, we successfully achieved a desired multiscale-patterned surface by partially curing select regions using TiO2/PDMS pads with partial UVA ray blockers. The ability to fabricate multifunctional polymeric pads is advantageous for satisfying increasing demands for flexible and wearable electronics, displays, and solar cells.

44 citations

Journal ArticleDOI
TL;DR: Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane and showed better performance than conventional MEAs, mainly because of the improved water transport.
Abstract: Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

41 citations


Cited by
More filters
01 Jan 2007
Abstract: Fogging occurs when moisture condensation takes the form of accumulated droplets with diameters larger than 190 nm or half of the shortest wavelength (380 nm) of visible light. This problem may be effectively addressed by changing the affinity of a material’s surface for water, which can be accomplished via two approaches: i) the superhydrophilic approach, with a water contact angle (CA) less than 5°, and ii) the superhydrophobic approach, with a water CA greater than 150°, and extremely low CA hysteresis. To date, all techniques reported belong to the former category, as they are intended for applications in optical transparent coatings. A well-known example is the use of photocatalytic TiO2 nanoparticle coatings that become superhydrophilic under UV irradiation. Very recently, a capillary effect was skillfully adopted to achieve superhydrophilic properties by constructing 3D nanoporous structures from layer-by-layer assembled nanoparticles. The key to these two “wet”-style antifogging strategies is for micrometer-sized fog drops to rapidly spread into a uniform thin film, which can prevent light scattering and reflection from nucleated droplets. Optical transparency is not an intrinsic property of antifogging coatings even though recently developed antifogging coatings are almost transparent, and the transparency could be achieved by further tuning the nanoparticle size and film thickness. To our knowledge, the antifogging coatings may also be applied to many fields that do not require optical transparency, including, for example, paints for inhibiting swelling and peeling issues and metal surfaces for preventing corrosion. These types of issues, which are caused by adsorption of moisture, are hard to solve by the superhydrophilic approach because of its inherently “wet” nature. Thus, a “dry”-style antifogging strategy, which consists of a novel superhydrophobic technique that can prevent moisture or microscale fog drops from nucleating on a surface, is desired. Recent bionic researches have revealed that the self-cleaning ability of lotus leaves and the striking ability of a water-strider’s legs to walk on water can be attributed to the ideal superhydrophobicity of their surfaces, induced by special microand nanostructures. To date, the biomimetic fabrication of superhydrophobic microand/or nanostructures has attracted considerable interest, and these types of materials can be used for such applications as self-cleaning coatings and stain-resistant textiles. Although a superhydrophobic technique inspired by lotus leaves is expected to be able to solve such fogging problems because the water droplets can not remain on the surface, there are no reports of such antifogging coatings. Very recently, researchers from General Motors have reported that the surfaces of lotus leaves become wet with moisture because the size of the fog drops are at the microscale—so small that they can be easily trapped in the interspaces among micropapillae. Thus, lotuslike surface microstructures are unsuitable for superhydrophobic antifogging coatings, and a new inspiration from nature is desired for solving this problem. In this communication, we report a novel, biological, superhydrophobic antifogging strategy. It was found that the compound eyes of the mosquito C. pipiens possess ideal superhydrophobic properties that provide an effective protective mechanism for maintaining clear vision in a humid habitat. Our research indicates that this unique property is attributed to the smart design of elaborate microand nanostructures: hexagonally non-close-packed (ncp) nipples at the nanoscale prevent microscale fog drops from condensing on the ommatidia surface, and hexagonally close-packed (hcp) ommatidia at the microscale could efficiently prevent fog drops from being trapped in the voids between the ommatidia. We also fabricated artificial compound eyes by using soft lithography and investigated the effects of microand nanostructures on the surface hydrophobicity. These findings could be used to develop novel superhydrophobic antifogging coatings in the near future. It is known that mosquitoes possess excellent vision, which they exploit to locate various resources such as mates, hosts, and resting sites in a watery and dim habitat. To better understand such remarkable abilities, we first investigated the interaction between moisture and the eye surface. An ultrasonic humidifier was used to regulate the relative humidity of the atmosphere and mimic a mist composed of numerous tiny water droplets with diameters less than 10 lm. As the fog was C O M M U N IC A IO N

756 citations

Journal ArticleDOI
Peng Ren1, Pucheng Pei1, Li Yuehua1, Wu Ziyao1, Chen Dongfang1, Shangwei Huang1 
TL;DR: In this article, the degradation mechanisms of proton exchange membrane (PEM) fuel cells are elaborated systematically according to parameter characteristics, microstructure, and aging reactions, and further investigation into improved fuel cell durability via mechanism analysis, condition optimization, control strategy development, structural design of the membrane electrode assembly, and component material development.

234 citations

21 Apr 2014
TL;DR: It is demonstrated that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency and suggesting a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected.
Abstract: Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling Michael G. Deceglie † , Vivian E. Ferry ‡ , A. Paul Alivisatos ‡ , and Harry A. Atwater* ,† Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States Abstract: Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected. Keywords: Thin film solar cells, plasmon, nanophotonic, light trapping, simulation, device physics, silicon, photovoltaics In order to maximize solar cell efficiency, it is necessary to optimize both the electrical device physics and the optical absorption of the device. Typically, these two problems are treated separately,

214 citations

Journal ArticleDOI
01 Jan 2017-Small
TL;DR: It is reported that yttrium-doped tin dioxide (Y-SnO2) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs.
Abstract: Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current–voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.

179 citations

Journal ArticleDOI
TL;DR: In this article, the degradation of PEMFC cathode catalysts has been investigated in a fuel cell electric vehicle (FCEV) application, and the degradation is mitigated by utilizing a cathode catalyst with a lower BOL activity (e.g., much lower transition metal alloy content and larger BOL nanoparticle size).

172 citations