scispace - formally typeset
Search or ask a question
Author

Seh Hee Jang

Bio: Seh Hee Jang is an academic researcher from KAIST. The author has contributed to research in topics: Fermentation & DnaA. The author has an hindex of 3, co-authored 3 publications receiving 1064 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes and the strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process.
Abstract: Butanol is an aliphatic saturated alcohol having the molecular formula of C4H9OH Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications Moreover, butanol has been considered as a potential fuel or fuel additive Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed Biotechnol Bioeng 2008;101: 209-228 © 2008 Wiley Periodicals, Inc

1,017 citations

Journal ArticleDOI
TL;DR: Kinetic models are proposed for the batch production of succinic acid from glucose by Mannheimia succiniciproducens MBEL55E and can be employed for the development and optimization of biobased succinic Acid production processes.

100 citations

Journal ArticleDOI
TL;DR: These shuttle vectors were found to be suitable as expression vectors as the homologous fumC gene encoding fumarase and the heterologous genes encoding green fluorescence protein and red fluorescenceprotein could be expressed successfully and should be useful for genetic and metabolic engineering of succinic acid-producing rumen bacteria.
Abstract: Shuttle vectors carrying the origins of replication that function in Escherichia coli and two capnophilic rumen bacteria, Mannheimia succiniciproducens and Actinobacillus succinogenes, were constructed. These vectors were found to be present at ca. 10 copies per cell. They were found to be stably maintained in rumen bacteria during the serial subcultures in the absence of antibiotic pressure for 216 generations. By optimizing the electroporation condition, the transformation efficiencies of 3.0 × 106 and 7.1 × 106 transformants/μg DNA were obtained with M. succiniciproducens and A. succinogenes, respectively. A 1.7-kb minimal replicon was identified that consists of the rep gene, four iterons, A+T-rich regions, and a dnaA box. It was found that the shuttle vector replicates via the theta mode, which was confirmed by sequence analysis and Southern hybridization. These shuttle vectors were found to be suitable as expression vectors as the homologous fumC gene encoding fumarase and the heterologous genes encoding green fluorescence protein and red fluorescence protein could be expressed successfully. Thus, the shuttle vectors developed in this study should be useful for genetic and metabolic engineering of succinic acid-producing rumen bacteria.

28 citations


Cited by
More filters
Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production, and to compete with more conventional fuels.
Abstract: Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

986 citations

Journal ArticleDOI
TL;DR: In this article, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel.
Abstract: Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review.

850 citations

Journal ArticleDOI
TL;DR: A detailed overview of recent results on alcohol combustion can be found in this paper, with a particular emphasis on butanols and other linear and branched members of the alcohol family, from methanol to hexanols.

676 citations

Journal ArticleDOI
TL;DR: This review describes re-commercialization efforts and highlights developments in feedstock utilization, microbial strain development and fermentation process development, all of which significantly impact production costs.

667 citations

Journal ArticleDOI
TL;DR: A modified clostridial 1-butanol pathway is constructed in Escherichia coli to provide an irreversible reaction catalyzed by trans-enoyl-coenzyme A (CoA) reductase (Ter) and NADH and acetyl-CoA driving forces to direct the flux and demonstrate the importance of driving forces in the efficient production of nonnative products.
Abstract: 1-Butanol, an important chemical feedstock and advanced biofuel, is produced by Clostridium species. Various efforts have been made to transfer the clostridial 1-butanol pathway into other microorganisms. However, in contrast to similar compounds, only limited titers of 1-butanol were attained. In this work, we constructed a modified clostridial 1-butanol pathway in Escherichia coli to provide an irreversible reaction catalyzed by trans-enoyl-coenzyme A (CoA) reductase (Ter) and created NADH and acetyl-CoA driving forces to direct the flux. We achieved high-titer (30 g/liter) and high-yield (70 to 88% of the theoretical) production of 1-butanol anaerobically, comparable to or exceeding the levels demonstrated by native producers. Without the NADH and acetyl-CoA driving forces, the Ter reaction alone only achieved about 1/10 the level of production. The engineered host platform also enables the selection of essential enzymes with better catalytic efficiency or expression by anaerobic growth rescue. These results demonstrate the importance of driving forces in the efficient production of nonnative products.

639 citations