scispace - formally typeset
Search or ask a question
Author

Seithikurippu R. Pandi-Perumal

Bio: Seithikurippu R. Pandi-Perumal is an academic researcher from Somnogen Canada Inc. The author has contributed to research in topics: Melatonin & Circadian rhythm. The author has an hindex of 54, co-authored 247 publications receiving 9733 citations. Previous affiliations of Seithikurippu R. Pandi-Perumal include SUNY Downstate Medical Center & Saveetha University.


Papers
More filters
Journal ArticleDOI
TL;DR: Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities, and its sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients.
Abstract: Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.

842 citations

Journal ArticleDOI
TL;DR: Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging.

709 citations

Journal ArticleDOI
TL;DR: The evidence concerning melatonin receptors and signal transduction pathways in various organs is reviewed and their relevance to circadian physiology and pathogenesis of certain human diseases, with a focus on the brain, the cardiovascular and immune systems, and cancer is considered.

665 citations

Journal ArticleDOI
TL;DR: The paper concludes by emphasizing sleep quality assessments as an important early risk indicator, thereby reducing the incidence of a wide spectrum of morbidities.

345 citations

Journal ArticleDOI
TL;DR: The dim light melatonin onset or DLMO marker is useful for determining whether an individual is entrained to a 24-h light/dark (LD) cycle or is in a free-running state, and is also useful for assessing phase delays or advances of rhythms in entrained individuals.
Abstract: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulphatoxymelatonin (aMT6S) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the endogenous oscillatory pacemaker. A substantial number of studies have shown that, within this rhythmic profile, the onset of melatonin secretion under dim light conditions (the dim light melatonin onset or DLMO) is the single most accurate marker for assessing the circadian pacemaker. Additionally, melatonin onset has been used clinically to evaluate problems related to the onset or offset of sleep. DLMO is useful for determining whether an individual is entrained (synchronized) to a 24-h light/dark (LD) cycle or is in a free-running state. DLMO is also useful for assessing phase delays or advances of rhythms in entrained individuals. Additionally, it has become an important tool for psychiatric diagnosis, its use being recommended for phase typing in patients suffering from sleep and mood disorders. More recently, DLMO has also been used to assess the chronobiological features of seasonal affective disorder (SAD). DLMO marker is also useful for identifying optimal application times for therapies such as bright light or exogenous melatonin treatment.

325 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
14 Jan 2010-Neuron
TL;DR: Behavior, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments are reviewed, finding gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved with emotion and stress.

2,749 citations

Journal ArticleDOI
01 Dec 1941-Nature
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Abstract: The Pharmacological Basis of Therapeutics A Textbook of Pharmacology, Toxicology and Therapeutics for Physicians and Medical Students. By Prof. Louis Goodman and Prof. Alfred Gilman. Pp. xiii + 1383. (New York: The Macmillan Company, 1941.) 50s. net.

2,686 citations

Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal Article
TL;DR: Qualitative research in such mobile health clinics has found that patients value the informal, familiar environment in a convenient location, with staff who “are easy to talk to,” and that the staff’s “marriage of professional and personal discourses” provides patients the space to disclose information themselves.
Abstract: www.mobilehealthmap.org 617‐442‐3200 New research shows that mobile health clinics improve health outcomes for hard to reach populations in cost‐effective and culturally competent ways . A Harvard Medical School study determined that for every dollar invested in a mobile health clinic, the US healthcare system saves $30 on average. Mobile health clinics, which offer a range of services from preventive screenings to asthma treatment, leverage their mobility to treat people in the convenience of their own communities. For example, a mobile health clinic in Baltimore, MD, has documented savings of $3,500 per child seen due to reduced asthma‐related hospitalizations. The estimated 2,000 mobile health clinics across the country are providing similarly cost‐effective access to healthcare for a wide range of populations. Many successful mobile health clinics cite their ability to foster trusting relationships. Qualitative research in such mobile health clinics has found that patients value the informal, familiar environment in a convenient location, with staff who “are easy to talk to,” and that the staff’s “marriage of professional and personal discourses” provides patients the space to disclose information themselves. A communications academic argued that mobile health clinics’ unique use of space is important in facilitating these relationships. Mobile health clinics park in the heart of the community in familiar spaces, like shopping centers or bus stations, which lend themselves to the local community atmosphere.

2,003 citations