Author
Senentxu Lanceros-Méndez
Other affiliations: Montana State University, University of Minho, Ikerbasque ...read more
Bio: Senentxu Lanceros-Méndez is an academic researcher from Basque Center for Materials, Applications and Nanostructures. The author has contributed to research in topics: Materials science & Membrane. The author has an hindex of 67, co-authored 739 publications receiving 20004 citations. Previous affiliations of Senentxu Lanceros-Méndez include Montana State University & University of Minho.
Topics: Materials science, Membrane, Dielectric, Nanocomposite, Medicine
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.
Abstract: Poly(vinylidene fluoride), PVDF, and its copolymers are the family of polymers with the highest dielectric constant and electroactive response, including piezoelectric, pyroelectric and ferroelectric effects. The electroactive properties are increasingly important in a wide range of applications such as in biomedicine, energy generation and storage, monitoring and control, and include the development of sensors and actuators, separator and filtration membranes and smart scaffolds, among others. For many of these applications the polymer should be in one of its electroactive phases. This review presents the developments and summarizes the main characteristics of the electroactive phases of PVDF and copolymers, indicates the different processing strategies as well as the way in which the phase content is identified and quantified. Additionally, recent advances in the development of electroactive composites allowing novel effects, such as magnetoelectric responses, and opening new applications areas are presented. Finally, some of the more interesting potential applications and processing challenges are discussed.
2,242 citations
TL;DR: The phase transformation from α to β poly(vinylidene fluoride) (PVDF) through a stretching process at different temperatures was investigated in this paper, where the stretched samples were studied and characterized by infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry.
Abstract: The phase transformation from α to β poly(vinylidene fluoride) (PVDF) through a stretching process at different temperatures was investigated. Samples of originally α-PVDF were stretched uniaxially at different temperatures at draw ratios from 1 to 5. The stretched samples were studied and characterized by infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The maximum β-phase content was achieved at 80°C and a stretch ratio of 5, but the samples still showed 20% of the original α-phase. Accompanying the phase transformation, an orientation of the polymer chains was observed. The stretching process also influenced the degree of crystallinity of the polymer. Poling of the samples also improves the α- to β-phase transformation.
458 citations
TL;DR: A number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres are presented.
Abstract: Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the β phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer β phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.
427 citations
TL;DR: The present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnet NPs and how these effects limit their utilization in the biomedical area.
Abstract: V.F.C. and A.F. contributed equally to this work. The authors thank the FCT—Fundacao para a Ciencia e Tecnologia—for financial support under framework of the Strategic Funding UID/FIS/04650/2013, project PTDC/ EEI-SII/5582/2014 and project UID/EEA/04436/2013 by FEDER funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalizacao (POCI). Funds provided by FCT in the framework of EuroNanoMed 2016 call, Project LungChek ENMed/0049/2016 are also gratefully acknowledged. V.F.C., A.F., C.R., and P.M. also thank the FCT for the grants SFRH/BPD/98109/2013, SFRH/BPD/104204/2014, SFRH/ BPD/90870/2012 and SFRH/BPD/96227/2013, respectively. Finally, the authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK program.
403 citations
TL;DR: In this article, the structural changes that occur in semicrystalline poly(vinylidene fluoride) during a mechanical deformation process were studied by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC).
Abstract: Films of semicrystalline poly(vinylidene fluoride) (PVDF) in the β-phase were studied by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The main goal of this study was to improve the understanding of the structural changes that occur in β-PVDF during a mechanical deformation process. FTIR spectroscopy was used to examine the structural variations as a function of strain. DSC data allowed measurement of the melting temperatures and enthalpies of the material before and after deformation, providing information about the changes in the crystalline fraction. After the molecular vibrations were assigned to the corresponding vibrational modes, we investigated the energy and intensity variations of these vibrations at different deformations. A reorientation of the chains from perpendicular to parallel to the stress direction was observed to occur in the plastic region. During the deformation, a decrease in the degree of crystallinity of the material was observed, but ...
375 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.
29,323 citations
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or
7,563 citations
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.
Abstract: Poly(vinylidene fluoride), PVDF, and its copolymers are the family of polymers with the highest dielectric constant and electroactive response, including piezoelectric, pyroelectric and ferroelectric effects. The electroactive properties are increasingly important in a wide range of applications such as in biomedicine, energy generation and storage, monitoring and control, and include the development of sensors and actuators, separator and filtration membranes and smart scaffolds, among others. For many of these applications the polymer should be in one of its electroactive phases. This review presents the developments and summarizes the main characteristics of the electroactive phases of PVDF and copolymers, indicates the different processing strategies as well as the way in which the phase content is identified and quantified. Additionally, recent advances in the development of electroactive composites allowing novel effects, such as magnetoelectric responses, and opening new applications areas are presented. Finally, some of the more interesting potential applications and processing challenges are discussed.
2,242 citations
TL;DR: A comprehensive overview of recent progress on the production and modification of polyvinylidene fluoride (PVDF) membranes for liquid-liquid or liquid-solid separation can be found in this article.
Abstract: This article provides a comprehensive overview of recent progress on the production and modification of poly(vinylidene fluoride) (PVDF) membranes for liquid–liquid or liquid–solid separation. The crystalline properties, thermal stability and chemical resistance were firstly considered in this review, followed by the production methods of PVDF membranes via phase inversion including immersion precipitation and thermally induced phase separation. Various hydrophilic modification approaches such as surface modification and blending modification for improving the fouling resistance of PVDF membranes were subsequently reviewed. Finally, in the light of the anticipated role of PVDF as a superior membrane material, future prospects on the production and modification of PVDF membranes were suggested.
1,776 citations