scispace - formally typeset
Search or ask a question
Author

Senthil S. Vel

Bio: Senthil S. Vel is an academic researcher from University of Maine. The author has contributed to research in topics: Boundary value problem & Material properties. The author has an hindex of 31, co-authored 58 publications receiving 3367 citations. Previous affiliations of Senthil S. Vel include University of Kerala & Virginia Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a three-dimensional exact solution for free and forced vibrations of simply supported functionally graded rectangular plates is presented, where suitable displacement functions that identically satisfy boundary conditions are used to reduce equations governing steady state vibrations of a plate to a set of coupled ordinary differential equations, which are then solved by employing the power series method.

544 citations

Journal ArticleDOI
TL;DR: In this paper, an exact solution is obtained for three-dimensional deformations of a simply supported functionally graded rectangular plate subjected to mechanical and thermal loads on its top and/or bottom surfaces.
Abstract: An exact solution is obtained for three-dimensional deformations of a simply supported functionally graded rectangular plate subjected to mechanical and thermal loads on its top and/or bottom surfaces. Suitable temperature and displacement functions that identically satisfy boundary conditions at the edges are used to reduce the partial differential equations governing the thermomechanical deformations to a set of coupled ordinary differential equations in the thickness coordinate, which are then solved by employing the power series method. The exact solution is applicable to both thick and thin plates. Results are presented for two-constituent metal‐ceramic functionally graded rectangular plates that have a power law through-the-thickness variation of the volume fractions of the constituents. The effective material properties at a point are estimated by either the Mori‐Tanaka or the self-consistentschemes. Exact displacementsand stressesatseveral locations for mechanical and thermal loads are used toassess theaccuracyof the classical plate theory, thee rst-ordershear deformation theory, and athird-order shear deformation theory for functionally graded plates. Results are alsocomputed for a functionally graded plate with material properties derived by the Mori‐Tanaka method, the self-consistent scheme, and a combination of these two methods.

466 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces.

287 citations

Journal ArticleDOI
TL;DR: In this article, a multi-objective genetic algorithm is used to obtain Pareto-optimal designs for two model problems having multiple, conflicting, objectives, including load carrying capacity and minimizing the mass of a graphite/epoxy laminate that is subjected to biaxial moments.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads is analyzed using the power series method, which is also valid for isotropic and fiber-reinforced shells.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a scaling analysis is performed to demonstrate that the effectiveness of actuators is independent of the size of the structure and evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure.
Abstract: This work presents the analytic and experimental development of piezoelectric actuators as elements of intelligent structures, i.e., structures with highly distributed actuators, sensors, and processing networks. Static and dynamic analytic models are derived for segmented piezoelectric actuators that are either bonded to an elastic substructure or embedded in a laminated composite. These models lead to the ability to predict, a priori, the response of the structural member to a command voltage applied to the piezoelectric and give guidance as to the optimal location for actuator placement. A scaling analysis is performed to demonstrate that the effectiveness of piezoelectric actuators is independent of the size of the structure and to evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure. Three test specimens of cantilevered beams were constructed: an aluminum beam with surface-bonded actuators, a glass/epoxy beam with embedded actuators, and a graphite/epoxy beam with embedded actuators. The actuators were used to excite steady-state resonant vibrations in the cantilevered beams. The response of the specimens compared well with those predicted by the analytic models. Static tensile tests performed on glass/epoxy laminates indicated that the embedded actuator reduced the ultimate strength of the laminate by 20%, while not significantly affecting the global elastic modulus of the specimen.

2,719 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: Diverse areas relevant to various aspects of theory and applications of FGM include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture.
Abstract: This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions. DOI: 10.1115/1.2777164

1,008 citations

Journal ArticleDOI
TL;DR: In this article, an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures is presented. But, although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations.
Abstract: This work is an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures. Although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations. Most of the theories and finite elements that have been proposed over the last thirty years are in fact based on these types of approaches. The paper has been divided into three parts. Part I, has been devoted to the description of possible approaches to plate and shell structures: 3D approaches, continuum based methods, axiomatic and asymptotic two-dimensional theories, classical and mixed formulations, equivalent single layer and layer wise variable descriptions are considered (the number of the unknown variables is considered to be independent of the number of the constitutive layers in the equivalent single layer case). Complicating effects that have been introduced by anisotropic behavior and layered constructions, such as high transverse deformability, zig-zag effects and interlaminar continuity, have been discussed and summarized by the acronimC -Requirements. Two-dimensional theories have been dealt with in Part II. Contributions based on axiomatic, asymtotic and continuum based approaches have been overviewed. Classical theories and their refinements are first considered. Both case of equivalent single-layer and layer-wise variables descriptions are discussed. The so-called zig-zag theories are then discussed. A complete and detailed overview has been conducted for this type of theory which relies on an approach that is entirely originated and devoted to layered constructions. Formulas and contributions related to the three possible zig-zag approaches, i.e. Lekhnitskii-Ren, Ambartsumian-Whitney-Rath-Das, Reissner-Murakami-Carrera ones have been presented and overviewed, taking into account the findings of a recent historical note provided by the author. Finite Element FE implementations are examined in Part III. The possible developments of finite elements for layered plates and shells are first outlined. FEs based on the theories considered in Part II are discussed along with those approaches which consist of a specific application of finite element techniques, such as hybrid methods and so-called global/local techniques. The extension of finite elements that were originally developed for isotropic one layered structures to multilayerd plates and shells are first discussed. Works based on classical and refined theories as well as on equivalent single layer and layer-wise descriptions have been overviewed. Development of available zig-zag finite elements has been considered for the three cases of zig-zag theories. Finite elements based on other approches are also discussed. Among these, FEs based on asymtotic theories, degenerate continuum approaches, stress resultant methods, asymtotic methods, hierarchy-p,_-s global/local techniques as well as mixed and hybrid formulations have been overviewed.

839 citations