scispace - formally typeset
Search or ask a question
Author

Seok-Bum Ko

Bio: Seok-Bum Ko is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Computer science & Adder. The author has an hindex of 21, co-authored 175 publications receiving 1694 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38%, respectively, compared to an exact multiplier, and have better precision when compared to existing approximate multipliers.
Abstract: Approximate computing can decrease the design complexity with an increase in performance and power efficiency for error resilient applications. This brief deals with a new design approach for approximation of multipliers. The partial products of the multiplier are altered to introduce varying probability terms. Logic complexity of approximation is varied for the accumulation of altered partial products based on their probability. The proposed approximation is utilized in two variants of 16-bit multipliers. Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38%, respectively, compared to an exact multiplier. They have better precision when compared to existing approximate multipliers. Mean relative error figures are as low as 7.6% and 0.02% for the proposed approximate multipliers, which are better than the previous works. Performance of the proposed multipliers is evaluated with an image processing application, where one of the proposed models achieves the highest peak signal to noise ratio.

236 citations

Journal ArticleDOI
TL;DR: This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging and supports the effectiveness of transfer learning when applying deep learning technique to medical imaging.

155 citations

Posted Content
TL;DR: It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making, and the well-known CheXNet model is utilized to develop COVID-CXNet, a step towards a fully automated and robust CO VID-19 detection system.
Abstract: One of the primary clinical observations for screening the infectious by the novel coronavirus is capturing a chest x-ray image In most of the patients, a chest x-ray contains abnormalities, such as consolidation, which are the results of COVID-19 viral pneumonia In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making In this paper, numerous chest x-ray images from various sources are collected, and the largest publicly accessible dataset is prepared Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized for developing COVID-CXNet This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system

110 citations

Journal ArticleDOI
TL;DR: The relationship between blood pressure and PTT is illustrated, the problems of calibration and re-calibration are discussed, and the multi-innovation recursive least square algorithm is employed to update the unknown parameter vector for the model and improve the results.

106 citations

Journal ArticleDOI
TL;DR: The proposed CNN employing a multiview strategy showed promise for the diagnosis of breast cancer, and could be used as a second reviewer for increasing diagnostic reliability.
Abstract: To assist radiologists in breast cancer classification in automated breast ultrasound (ABUS) imaging, we propose a computer-aided diagnosis based on a convolutional neural network (CNN) that classifies breast lesions as benign and malignant. The proposed CNN adopts a modified Inception-v3 architecture to provide efficient feature extraction in ABUS imaging. Because the ABUS images can be visualized in transverse and coronal views, the proposed CNN provides an efficient way to extract multiview features from both views. The proposed CNN was trained and evaluated on 316 breast lesions (135 malignant and 181 benign). An observer performance test was conducted to compare five human reviewers' diagnostic performance before and after referring to the predicting outcomes of the proposed CNN. Our method achieved an area under the curve (AUC) value of 0.9468 with five-folder cross-validation, for which the sensitivity and specificity were 0.886 and 0.876, respectively. Compared with conventional machine learning-based feature extraction schemes, particularly principal component analysis (PCA) and histogram of oriented gradients (HOG), our method achieved a significant improvement in classification performance. The proposed CNN achieved a >10% increased AUC value compared with PCA and HOG. During the observer performance test, the diagnostic results of all human reviewers had increased AUC values and sensitivities after referring to the classification results of the proposed CNN, and four of the five human reviewers' AUCs were significantly improved. The proposed CNN employing a multiview strategy showed promise for the diagnosis of breast cancer, and could be used as a second reviewer for increasing diagnostic reliability.

80 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Nov 1997
TL;DR: Recognizing the mannerism ways to get this books computer organization and design the hardware software interface 4th fourth edition by patterson hennessy is additionally useful.
Abstract: Recognizing the mannerism ways to get this books computer organization and design the hardware software interface 4th fourth edition by patterson hennessy is additionally useful. You have remained in right site to begin getting this info. acquire the computer organization and design the hardware software interface 4th fourth edition by patterson hennessy join that we manage to pay for here and check out the link.

832 citations

Journal ArticleDOI
TL;DR: This review explains the conventional BP measurement methods and their limitations; presents models to summarize the theory of the PTT-BP relationship; outlines the approach while pinpointing the key challenges; and discusses realistic expectations for the approach.
Abstract: Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work toward putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach.

648 citations

Posted Content
TL;DR: An exhaustive review of the research conducted in neuromorphic computing since the inception of the term is provided to motivate further work by illuminating gaps in the field where new research is needed.
Abstract: Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed

570 citations

Journal ArticleDOI
26 Jun 2019
TL;DR: Although the technology is not yet mature, it is anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices given their vast potential.
Abstract: The measurement of blood pressure (BP) is critical to the treatment and management of many medical conditions. High blood pressure is associated with many chronic disease conditions, and is a major source of mortality and morbidity around the world. For outpatient care as well as general health monitoring, there is great interest in being able to accurately and frequently measure BP outside of a clinical setting, using mobile or wearable devices. One possible solution is photoplethysmography (PPG), which is most commonly used in pulse oximetry in clinical settings for measuring oxygen saturation. PPG technology is becoming more readily available, inexpensive, convenient, and easily integrated into portable devices. Recent advances include the development of smartphones and wearable devices that collect pulse oximeter signals. In this article, we review (i) the state-of-the-art and the literature related to PPG signals collected by pulse oximeters, (ii) various theoretical approaches that have been adopted in PPG BP measurement studies, and (iii) the potential of PPG measurement devices as a wearable application. Past studies on changes in PPG signals and BP are highlighted, and the correlation between PPG signals and BP are discussed. We also review the combined use of features extracted from PPG and other physiological signals in estimating BP. Although the technology is not yet mature, it is anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices given their vast potential.

327 citations