scispace - formally typeset
Search or ask a question
Author

Seok Burm Choe

Bio: Seok Burm Choe is an academic researcher. The author has contributed to research in topics: Dehydrogenation & Amorphous metal. The author has an hindex of 1, co-authored 1 publications receiving 1110 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 1991-Nature
TL;DR: In this paper, the synthesis of metallic glass powders using the microscopically extreme (yet macroscopically mild) conditions induced by high-intensity ultrasound was described, and the results showed that metallic glass powder is a highly active catalyst for the Fischer-Tropsch hydrogenation of carbon monoxide and for hydrogenolysis and dehydrogenation of saturated hydrocarbons.
Abstract: AMORPHOUS metallic alloys ('metallic glasses') lack long-range crystalline order and have unique electronic, magnetic and corrosion-resistant properties1–3. Their applications include use in power-transformer cores, magnetic storage media, cryothermometry and corrosion-resistant coatings. The production of metallic glasses is made difficult, however, by the extremely rapid cooling from the melt that is necessary to prevent crystallization. Cooling rates of about 105 to 107 K s−1 are generally required; for comparison, plunging red-hot steel into water produces cooling rates of only about 2,500 K s−1. Metallic glasses can be formed by splattering molten metal on a cold surface using techniques such as gun, roller or splat quenching4,5. Acoustic cavitation is known to induce extreme local heating in otherwise cold liquids, and to provide very rapid cooling rates6–11. Here we describe the synthesis of metallic-glass powders using the microscopically extreme (yet macroscopically mild) conditions induced by high-intensity ultrasound. The sonolysis of iron pentacarbonyl, a volatile organometallic compound, produces nearly pure amorphous iron. This amorphous iron powder is a highly active catalyst for the Fischer–Tropsch hydrogenation of carbon monoxide and for hydrogenolysis and dehydrogenation of saturated hydrocarbons.

1,149 citations

Journal ArticleDOI
TL;DR: In this paper , photo-generated electrons are transferred by substitutional Al doping on Zn sites in one-dimensional arrays to increase the photocurrent density to −1.1 mA/cm2 at −0.11 VRHE, which is 3.5 times higher than that for pristine ZnTe.
Abstract: Syngas, traditionally produced from fossil fuels and natural gases at high temperatures and pressures, is an essential precursor for chemicals utilized in industry. Solar-driven syngas production can provide an ideal pathway for reducing energy consumption through simultaneous photoelectrochemical CO2 and water reduction at ambient temperatures and pressures. This study performs photoelectrochemical syngas production using highly developed Al-doped ZnTe nanorod photocathodes (Al:ZnTe), prepared via an all-solution process. The facile photo-generated electrons are transferred by substitutional Al doping on Zn sites in one-dimensional arrays to increase the photocurrent density to −1.1 mA/cm2 at −0.11 VRHE, which is 3.5 times higher than that for the pristine ZnTe. The Al:ZnTe produces a minor CO (FE ≈ 12%) product by CO2 reduction and a major product of H2 (FE ≈ 60%) by water reduction at −0.11 VRHE. Furthermore, the product distribution is perfectly switched by simple modification of Au deposition on photocathodes. The Au coupled Al:ZnTe exhibits dominant CO production (FE ≈ 60%), suppressing H2 evolution (FE ≈ 15%). The strategies developed in this study, nanostructuring, doping, and surface modification of photoelectrodes, can be applied to drive significant developments in solar-driven fuel production.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
TL;DR: The chemical effects of ultrasound derive primarily from acoustic cavitation, which results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble as mentioned in this paper.
Abstract: The chemical effects of ultrasound derive primarily from acoustic cavitation. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble. The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored with important uses in synthetic materials chemistry. For example, the sonochemical decomposition of volatile organometallic precursors in low-volatility solvents produces nanostructured materials in various forms with high catalytic activities. Nanostructured metals, alloys, oxides, carbides and sulfides, nanometer colloids, and nanostructured supported catalysts can all be prepared by this general route. Another important application of sonochemistry in materials chemistry has been the preparation of biomaterials, most notably protein microspheres. Such microspheres have a wide range of biomedical applications, including their use in echo contrast agents for sonography, magnetic resonance imaging, contrast enhancement, and oxygen or drug delivery. Other applications include the modification of polymers and polymer surfaces.

1,550 citations

Journal ArticleDOI
TL;DR: The fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis are summarized.
Abstract: Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.

1,501 citations