scispace - formally typeset
Search or ask a question
Author

Seok Su Sohn

Bio: Seok Su Sohn is an academic researcher from Korea University. The author has contributed to research in topics: Ultimate tensile strength & Austenite. The author has an hindex of 26, co-authored 113 publications receiving 2422 citations. Previous affiliations of Seok Su Sohn include Max Planck Society & Pohang University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
10 Jan 2018
TL;DR: In this article, the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations is investigated and a significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion.
Abstract: Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs. Atomistic calculations elucidate crucial strengthening mechanisms in high entropy alloys and predict better performing compositions. A team led by Byeong-Joo Lee at South Korea’s Pohang University of Science and Technology used various simulations techniques to study the movement of atoms in a series of disordered high entropy alloys. They attributed sluggish diffusion in the classic CoCrFeMnNi alloy to the large number of stable vacancy sites, and at cryogenic temperatures showed that micro-twinning was due to a more stable hexagonal crystal structure. Finally, they used their simulation results to predict the effect of alloying on the critical resolved shear stress and designed a high entropy alloy with improved properties. A computational approach to the design of high entropy alloys may thus help us develop more complex alloys and tailor their properties.

469 citations

Journal ArticleDOI
TL;DR: It is shown that a simple VCoNi equiatomic medium-entropy alloy exhibits a near 1 GPa yield strength and good ductility, outperforming conventional solid-solution alloys, demonstrating that severe lattice distortion is a key property for identifying extra-strong materials for structural engineering applications.
Abstract: Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium- and high-entropy alloys investigated so far do not substantially exceed those of conventional alloys owing to the insufficient utilization of lattice distortion. Here it is shown that a simple VCoNi equiatomic medium-entropy alloy exhibits a near 1 GPa yield strength and good ductility, outperforming conventional solid-solution alloys. It is demonstrated that a wide fluctuation of the atomic bond distances in such alloys, i.e., severe lattice distortion, improves both yield stress and its sensitivity to grain size. In addition, the dislocation-mediated plasticity effectively enhances the strength-ductility relationship by generating nanosized dislocation substructures due to massive pinning. The results demonstrate that severe lattice distortion is a key property for identifying extra-strong materials for structural engineering applications.

271 citations

Journal ArticleDOI
TL;DR: The results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys.
Abstract: The excellent cryogenic tensile properties of the CrMnFeCoNi alloy are generally caused by deformation twinning, which is difficult to achieve at room temperature because of insufficient stress for twinning. Here, we induced twinning at room temperature to improve the cryogenic tensile properties of the CrMnFeCoNi alloy. Considering grain size effects on the critical stress for twinning, twins were readily formed in the coarse microstructure by cold rolling without grain refinement by hot rolling. These twins were retained by partial recrystallization and played an important role in improving strength, allowing yield strengths approaching 1 GPa. The persistent elongation up to 46% as well as the tensile strength of 1.3 GPa are attributed to additional twinning in both recrystallized and non-recrystallization regions. Our results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys.

267 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of Mn and Al contents on tensile and Charpy impact properties in four austenitic high-Mn steels were investigated at room and cryogenic temperatures.

170 citations

Journal ArticleDOI
TL;DR: In this paper, a ferrous Fe60Co15Ni15Cr10 (at%) medium-entropy alloys (MEAs) was shown to exhibit a combination of cryogenic tensile strength of ∼1.5 GPa and ductility of ∼87% due to the multiple-stage strain hardening.

150 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Abstract: Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking. High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

1,798 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed review of the deformation mechanisms of HEAs with the complex concentrated alloys (CCAs) with the FCC and BCC structures, highlighting both successes and limitations.

769 citations

Journal ArticleDOI
10 Jan 2018
TL;DR: In this article, the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations is investigated and a significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion.
Abstract: Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs. Atomistic calculations elucidate crucial strengthening mechanisms in high entropy alloys and predict better performing compositions. A team led by Byeong-Joo Lee at South Korea’s Pohang University of Science and Technology used various simulations techniques to study the movement of atoms in a series of disordered high entropy alloys. They attributed sluggish diffusion in the classic CoCrFeMnNi alloy to the large number of stable vacancy sites, and at cryogenic temperatures showed that micro-twinning was due to a more stable hexagonal crystal structure. Finally, they used their simulation results to predict the effect of alloying on the critical resolved shear stress and designed a high entropy alloy with improved properties. A computational approach to the design of high entropy alloys may thus help us develop more complex alloys and tailor their properties.

469 citations