scispace - formally typeset
Search or ask a question
Author

Seong Ho Choi

Bio: Seong Ho Choi is an academic researcher from Chungbuk National University. The author has contributed to research in topics: Adipose tissue & Conjugated linoleic acid. The author has an hindex of 12, co-authored 50 publications receiving 519 citations. Previous affiliations of Seong Ho Choi include Texas A&M University & Sejong University.

Papers
More filters
Journal ArticleDOI
TL;DR: The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects, which revealed a significant effect against the bacteria Klebsiella pneumonia and Escherichia coli.
Abstract: The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet-visible spectroscopy (435 nm). The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71-71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo fibroblast cells (25 μg/mL); hence, these particles were safe to use.

182 citations

Journal ArticleDOI
TL;DR: Neither CLA nor arginine depressed tissue lipid synthesis in growing/finishing pigs, and in fact dietary CLA promoted elevated intramuscular lipid and Arginine increased carcass adiposity.
Abstract: We proposed that the combination of conjugated linoleic acid (CLA) and arginine would decrease adiposity by depressing lipid synthesis in liver and adipose tissues of growing pigs. Pigs were allotted to treatments in a 2 × 2 factorial design with two lipids (CLA or canola oil) and two amino acids [L-arginine or L-alanine (isonitrogenous control)]; supplements were provided from 80 to 110 kg body weight (approximately 4 weeks). Treatment groups (n = 4) were: control (2.05% L-alanine plus 1% canola oil); CLA (2.05% L-alanine plus 1% CLA); arginine (1.0% L-arginine plus 1.0% canola oil); arginine plus CLA (1.0% arginine plus 1.0% CLA). Arginine increased backfat thickness (P = 0.07) in the absence or presence of CLA, and arginine supplementation increased subcutaneous and retroperitoneal adipocyte volume, especially in combination with dietary CLA (interaction P = 0.001). Arginine increased palmitate incorporation into total lipids by over 60% in liver (P = 0.07). Dietary CLA increased palmitate incorporation into lipids in longissimus muscle by over 100% (P = 0.01), and CLA increased longissimus muscle lipid by nearly 20%. CLA increased glucose oxidation to CO(2) by over 80% in retroperitoneal and subcutaneous adipose tissues (P = 0.04), and doubled palmitate oxidation to CO(2) in intestinal duodenal mucosal cells (P = 0.07). Arginine supplementation decreased muscle pH at 45 min postmortem (P = 0.001), indicating elevated early postmortem glycolysis, and CLA and arginine independently increased PGC-1α gene expression in longissimus muscle. CLA but not arginine depressed mTOR gene expression in intestinal duodenal mucosal cells. CLA decreased serum insulin by 50% (P = 0.02) but increased serum triacylglycerols by over 40%. CLA supplementation increased (P ≤ 0.01) total saturated fatty acids in liver and adipose tissue. In conclusion, neither CLA nor arginine depressed tissue lipid synthesis in growing/finishing pigs, and in fact dietary CLA promoted elevated intramuscular lipid and arginine increased carcass adiposity.

38 citations

Journal ArticleDOI
TL;DR: It is concluded that MUFA in the brisket and other depots with large SCD indices were deposited before 9 mo of age, during a time when the subcutaneous adipocytes were highly differentiated.
Abstract: We have demonstrated that among carcass adipose tissue depots, brisket subcutaneous adipose tissue contains the greatest concentration of MUFA and lowest concentration of SFA. Therefore, we hypothesized that brisket subcutaneous adipose tissue depots would exhibit greater adipogenic gene expres- sion over time than other major subcutaneous adipose tissue depots. Four Angus steers, each at 9, 12, 14, and 16 mo of age, were harvested and fresh subcutaneous adipose tissue samples were collected from over the brisket, chuck, rib, loin, sirloin, round, flank, and plate. Relative gene expression for C/EBPβ, PPARγ, carni- tine palmitoyltransferase-1 beta (CPT-1β), stearoyl- coenzyme A desaturase (SCD), AMP-activated protein kinase alpha (AMPKα), and G-coupled protein recep- tor 43 (GPR43) was analyzed by quantitative real-time PCR. Expression of C/EBPβ, PPARγ, and CPT-1β was greatest at 12 to 14 mo of age (all P < 0.0001) and declined to very low abundance by 16 mo of age in all depots. Expression of PPARγ and CPT-1β was greater (P < 0.03) in flank, rib, and sirloin subcutaneous adi- pose tissues than in brisket and round adipose tissues. The expression of the SCD gene did not differ among the 4 age groups (P = 0.95). The palmitoleic:stearic acid ratio (an estimate of SCD activity) was greater (P < 0.001) in the subcutaneous adipose tissues from brisket, plate, and round than in the loin, rib, and sir- loin. Conversely, subcutaneous adipose tissue from the loin, rib, and sirloin had greater (P < 0.001) SCD gene expression than the brisket, plate, and round. In general, subcutaneous adipose tissues with the high- est concentration of MUFA and least SFA consistently exhibited the least SCD gene expression and adipo- genic gene expression. We conclude that MUFA in the brisket and other depots with large SCD indices were deposited before 9 mo of age, during a time when the subcutaneous adipocytes were highly differentiated.

37 citations

Journal ArticleDOI
TL;DR: It can be concluded that malate and fumarate, as propionate precursors, act as alternative electron sinks and may compete with CH4 generation and bio-hydrogenation of C18:2 in the utilization of metabolic H2.

25 citations

Journal ArticleDOI
TL;DR: It is concluded that palm oil supplementation promoted lipid synthesis in adipose tissue without depressing feed efficiency or increasing the palmitic acid content of beef.
Abstract: We hypothesized that supplementing finishing diets with palm oil would promote adipocyte differentiation in subcutaneous adipose tissue of feedlot steers, and that soybean oil supplementation would depress adipocyte differentiation. Twenty-eight Angus steers were assigned randomly to 3 groups of 9 or 10 steers and fed a basal diet without additional fat (control), with 3% palm oil (rich in palmitic acid), or with 3% soybean oil (rich in polyunsaturated fatty acids), for 10 wk, top-dressed daily. Palm oil had no effect (P > 0.05) on ADG, food intake, or G:F, whereas soybean oil depressed ADG (P = 0.02), food intake (P = 0.04), and G:F (P = 0.05). Marbling scores tended (P = 0.09) to be greater in palm oil-fed steers (Modest(09)) than in soybean oil-fed steers (Small(55)). Subcutaneous adipocyte mean volume was greater in palm oil-fed steers (515.9 pL) than in soybean-supplemented cattle (395.6 pL; P = 0.01). Similarly, glucose and acetate incorporation into total lipids in vitro was greater in subcutaneous adipose tissue of palm oil-fed steers (119.9 and 242.8 nmol·3h(-1)·10(5) cells, respectively) than adipose tissue of soybean oil-fed steers in (48.9 and 95.8 nmol·3h(-1)·10(5) cells, respectively). Glucose-6-phosphate dehydrogenase and NADP-malate dehydrogenase activities were greater (P ≤ 0.05) in subcutaneous adipose tissue of palm oil-fed steers than in adipose tissue of control steers. Palm oil did not increase palmitic acid or decrease oleic acid in subcutaneous adipose tissue or LM, but decreased (P ≤ 0.05) myristoleic, palmitoleic, and cis-vaccenic acid in adipose tissue, indicating a depression in stearoyl-coenzyme A desaturase activity. Soybean oil increased the proportion of α-linolenic acid in adipose tissue and muscle and increased linoleic acid and 18:1trans-10 in muscle. We conclude that palm oil supplementation promoted lipid synthesis in adipose tissue without depressing feed efficiency or increasing the palmitic acid content of beef.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The following tables highlight daily diet dry matter and nutrient density requirements for diffferent classes of cattle at various stages of production based on the National Research Council’s Nutrient Requirements of Beef Cattle.

1,123 citations

Journal ArticleDOI
TL;DR: The potential uses of various biological sources for nanoparticle synthesis and the application of those nanoparticles are explored and the recent milestones achieved are highlighted by controlling critical parameters, including the choice of biological source, incubation period, pH, and temperature.

1,049 citations

Journal ArticleDOI
TL;DR: Functional AA, defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms, hold great promise in prevention and treatment of metabolic diseases.
Abstract: The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

538 citations

Journal ArticleDOI
TL;DR: This review describes the methods of green synthesis for Ag-NPs and their numerous applications and describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-Ns.
Abstract: Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.

502 citations

Journal ArticleDOI
TL;DR: Based on new research findings, NEAA should be taken into consideration in revising the classical “ideal protein” concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.
Abstract: Amino acids are necessary for the survival, growth, development, reproduction and health of all organisms. They were traditionally classified as nutritionally essential or non-essential for mammals, birds and fish based on nitrogen balance or growth. It was assumed that all “non-essential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and health. However, there has been no compelling experimental evidence to support this assumption over the past century. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and protect its mucosal integrity. Therefore, based on new research findings, NEAA should be taken into consideration in revising the classical “ideal protein” concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.

324 citations