scispace - formally typeset
Search or ask a question
Author

Seonhoon Kim

Other affiliations: Naver Corporation
Bio: Seonhoon Kim is an academic researcher from Seoul National University. The author has contributed to research in topics: Question answering & Computer science. The author has an hindex of 5, co-authored 12 publications receiving 235 citations. Previous affiliations of Seonhoon Kim include Naver Corporation.

Papers
More filters
Journal ArticleDOI
17 Jul 2019
TL;DR: A densely-connected co-attentive recurrent neural network, each layer of which uses concatenated information of attentive features as well as hidden features of all the preceding recurrent layers, which achieves state-of-the-art performances for most of the tasks.
Abstract: Sentence matching is widely used in various natural language tasks such as natural language inference, paraphrase identification, and question answering. For these tasks, understanding logical and semantic relationship between two sentences is required but it is yet challenging. Although attention mechanism is useful to capture the semantic relationship and to properly align the elements of two sentences, previous methods of attention mechanism simply use a summation operation which does not retain original features enough. Inspired by DenseNet, a densely connected convolutional network, we propose a densely-connected co-attentive recurrent neural network, each layer of which uses concatenated information of attentive features as well as hidden features of all the preceding recurrent layers. It enables preserving the original and the co-attentive feature information from the bottommost word embedding layer to the uppermost recurrent layer. To alleviate the problem of an ever-increasing size of feature vectors due to dense concatenation operations, we also propose to use an autoencoder after dense concatenation. We evaluate our proposed architecture on highly competitive benchmark datasets related to sentence matching. Experimental results show that our architecture, which retains recurrent and attentive features, achieves state-of-the-art performances for most of the tasks.

142 citations

Posted Content
TL;DR: The authors proposed a densely-connected co-attentive recurrent neural network (C-RNN), which uses concatenated information of attentive features as well as hidden features of all the preceding recurrent layers.
Abstract: Sentence matching is widely used in various natural language tasks such as natural language inference, paraphrase identification, and question answering. For these tasks, understanding logical and semantic relationship between two sentences is required but it is yet challenging. Although attention mechanism is useful to capture the semantic relationship and to properly align the elements of two sentences, previous methods of attention mechanism simply use a summation operation which does not retain original features enough. Inspired by DenseNet, a densely connected convolutional network, we propose a densely-connected co-attentive recurrent neural network, each layer of which uses concatenated information of attentive features as well as hidden features of all the preceding recurrent layers. It enables preserving the original and the co-attentive feature information from the bottommost word embedding layer to the uppermost recurrent layer. To alleviate the problem of an ever-increasing size of feature vectors due to dense concatenation operations, we also propose to use an autoencoder after dense concatenation. We evaluate our proposed architecture on highly competitive benchmark datasets related to sentence matching. Experimental results show that our architecture, which retains recurrent and attentive features, achieves state-of-the-art performances for most of the tasks.

107 citations

Posted Content
TL;DR: A self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning are proposed for multiple-choice video question answering with state-of-the-art performance on all datasets.
Abstract: Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice videoQA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.

21 citations

Proceedings ArticleDOI
01 Jul 2019
TL;DR: A novel algorithm for solving the textbook question answering (TQA) task is introduced which describes more realistic QA problems compared to other recent tasks and a novel self-supervised open-set learning process without any annotations is introduced.
Abstract: In this work, we introduce a novel algorithm for solving the textbook question answering (TQA) task which describes more realistic QA problems compared to other recent tasks. We mainly focus on two related issues with analysis of the TQA dataset. First, solving the TQA problems requires to comprehend multi-modal contexts in complicated input data. To tackle this issue of extracting knowledge features from long text lessons and merging them with visual features, we establish a context graph from texts and images, and propose a new module f-GCN based on graph convolutional networks (GCN). Second, scientific terms are not spread over the chapters and subjects are split in the TQA dataset. To overcome this so called ‘out-of-domain’ issue, before learning QA problems, we introduce a novel self-supervised open-set learning process without any annotations. The experimental results show that our model significantly outperforms prior state-of-the-art methods. Moreover, ablation studies validate that both methods of incorporating f-GCN for extracting knowledge from multi-modal contexts and our newly proposed self-supervised learning process are effective for TQA problems.

20 citations


Cited by
More filters
Proceedings ArticleDOI
31 Jan 2019
TL;DR: The authors proposed a multi-task deep neural network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks, which not only leverages large amounts of cross-task data, but also benefits from a regularization effect that leads to more general representations to help adapt to new tasks and domains.
Abstract: In this paper, we present a Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks. MT-DNN not only leverages large amounts of cross-task data, but also benefits from a regularization effect that leads to more general representations to help adapt to new tasks and domains. MT-DNN extends the model proposed in Liu et al. (2015) by incorporating a pre-trained bidirectional transformer language model, known as BERT (Devlin et al., 2018). MT-DNN obtains new state-of-the-art results on ten NLU tasks, including SNLI, SciTail, and eight out of nine GLUE tasks, pushing the GLUE benchmark to 82.7% (2.2% absolute improvement) as of February 25, 2019 on the latest GLUE test set. We also demonstrate using the SNLI and SciTail datasets that the representations learned by MT-DNN allow domain adaptation with substantially fewer in-domain labels than the pre-trained BERT representations. Our code and pre-trained models will be made publicly available.

647 citations

Posted Content
TL;DR: Presented on August 28, 2018 at 12:15 p.m. in the Pettit Microelectronics Research Center, Room 102 A/B.
Abstract: Presented on August 28, 2018 at 12:15 p.m. in the Pettit Microelectronics Research Center, Room 102 A/B.

583 citations

Journal ArticleDOI
TL;DR: This paper provided a comprehensive review of more than 150 deep learning-based models for text classification developed in recent years, and discussed their technical contributions, similarities, and strengths, and provided a quantitative analysis of the performance of different deep learning models on popular benchmarks.
Abstract: Deep learning--based models have surpassed classical machine learning--based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this article, we provide a comprehensive review of more than 150 deep learning--based models for text classification developed in recent years, and we discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and we discuss future research directions.

457 citations

Posted Content
TL;DR: A Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks that allows domain adaptation with substantially fewer in-domain labels than the pre-trained BERT representations.
Abstract: In this paper, we present a Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks. MT-DNN not only leverages large amounts of cross-task data, but also benefits from a regularization effect that leads to more general representations in order to adapt to new tasks and domains. MT-DNN extends the model proposed in Liu et al. (2015) by incorporating a pre-trained bidirectional transformer language model, known as BERT (Devlin et al., 2018). MT-DNN obtains new state-of-the-art results on ten NLU tasks, including SNLI, SciTail, and eight out of nine GLUE tasks, pushing the GLUE benchmark to 82.7% (2.2% absolute improvement). We also demonstrate using the SNLI and SciTail datasets that the representations learned by MT-DNN allow domain adaptation with substantially fewer in-domain labels than the pre-trained BERT representations. The code and pre-trained models are publicly available at this https URL.

455 citations

Posted Content
TL;DR: A comprehensive review of more than 150 deep learning--based models for text classification developed in recent years is provided, and their technical contributions, similarities, and strengths are discussed.
Abstract: Deep learning based models have surpassed classical machine learning based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this paper, we provide a comprehensive review of more than 150 deep learning based models for text classification developed in recent years, and discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and discuss future research directions.

293 citations