scispace - formally typeset
Search or ask a question
Author

Serdar Yavuz

Bio: Serdar Yavuz is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Graphene & Solar cell. The author has an hindex of 5, co-authored 7 publications receiving 307 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The CoFe2O4 NPs-on-CFP electrodes exhibit remarkably long stability evaluated by continuous cycling and operation with a high current density at a fixed potential without any morphological change and with preservation of all materials within the electrode.
Abstract: We report CoFe2O4 nanoparticles (NPs) synthesized using a facile hydrothermal growth and their attachment on 3D carbon fiber papers (CFPs) for efficient and durable oxygen evolution reaction (OER). The CFPs covered with CoFe2O4 NPs show orders of magnitude higher OER performance than bare CFP due to high activity of CoFe2O4 NPs, leading to a small overpotential of 378 mV to get a current density of 10 mA/cm2. Significantly, the CoFe2O4 NPs-on-CFP electrodes exhibit remarkably long stability evaluated by continuous cycling (over 15 h) and operation with a high current density at a fixed potential (over 40 h) without any morphological change and with preservation of all materials within the electrode. Furthermore, the CoFe2O4 NPs-on-CFP electrodes also exhibit hydrogen evolution reaction (HER) performance, which is considerably higher than that of bare CFP, acting as a bifunctional electrocatalyst. The achieved results show promising potential for efficient, cost-effective, and durable hydrogen generation a...

113 citations

Journal ArticleDOI
TL;DR: AMoS2–Pd composite exhibits greater sensing performance than its graphene counterpart, indicating that solvent exfoliated MoS2 holds great promise for inexpensive and scalable fabrication of highly sensitive chemical sensors.
Abstract: Highly sensitive hydrogen detection at room temperature can be realized by employing solution-processed MoS2 nanosheet-Pd nanoparticle composite. A MoS2-Pd composite exhibits greater sensing performance than its graphene counterpart, indicating that solvent exfoliated MoS2 holds great promise for inexpensive and scalable fabrication of highly sensitive chemical sensors.

110 citations

Journal ArticleDOI
TL;DR: A flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate, offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity.
Abstract: We report a flexible hydrogen sensor, composed of WS2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2–Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2–Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

81 citations

Journal ArticleDOI
TL;DR: It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability.
Abstract: It is shown that coating graphene–silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm−2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.

47 citations

Journal ArticleDOI
TL;DR: A significant improvement in the power conversion efficiency (PCE) and the environmental stability of n-Graphene/p-Si solar cells is indicated through effective n-doping of graphene, using low work function oxide capping layers.
Abstract: A significant improvement in the power conversion efficiency (PCE) and the environmental stability of n-Graphene/p-Si solar cells is indicated through effective n-doping of graphene, using low work...

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches and can yield spinels with improved ORR/OER catalytic activities, which can further accelerate the speed, prolong the life, and narrow the polarization of fuel cells, metal-air batteries, and water splitting devices.
Abstract: Spinels with the formula of AB2O4 (where A and B are metal ions) and the properties of magnetism, optics, electricity, and catalysis have taken significant roles in applications of data storage, biotechnology, electronics, laser, sensor, conversion reaction, and energy storage/conversion, which largely depend on their precise structures and compositions. In this review, various spinels with controlled preparations and their applications in oxygen reduction/evolution reaction (ORR/OER) and beyond are summarized. First, the composition and structure of spinels are introduced. Then, recent advances in the preparation of spinels with solid-, solution-, and vapor-phase methods are summarized, and new methods are particularly highlighted. The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches. This regulation can yield spinels with improved ORR/OER catalytic activities, which can furth...

1,036 citations

Journal ArticleDOI
Jin-Xian Feng1, Han Xu1, Yu-Tao Dong1, Sheng-Hua Ye1, Yexiang Tong1, Gao-Ren Li1 
TL;DR: The FeOOH/Co/FeOOH HNTAs exhibit high Electrocatalytic performance for OER, such as low onset potential, small Tafel slope, and excellent long-term durability, and they are promising electrocatalysts for O ER in alkaline solution.
Abstract: Herein, we developed FeOOH/Co/FeOOH hybrid nanotube arrays (HNTAs) supported on Ni foams for oxygen evolution reaction (OER). The inner Co metal cores serve as highly conductive layers to provide reliable electronic transmission, and can overcome the poor electrical conductivity of FeOOH efficiently. DFT calculations demonstrate the strong electronic interactions between Co and FeOOH in the FeOOH/Co/FeOOH HNTAs, and the hybrid structure can lower the energy barriers of intermediates and thus promote the catalytic reactions. The FeOOH/Co/FeOOH HNTAs exhibit high electrocatalytic performance for OER, such as low onset potential, small Tafel slope, and excellent long-term durability, and they are promising electrocatalysts for OER in alkaline solution.

608 citations

Journal ArticleDOI
TL;DR: In this article, a review of the most recent advancements in utilization of various 2D nanomaterials for gas sensing is provided, where the focus is on the sensing performances provided by devices integrating 2D Nanostructures.
Abstract: Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In recent years 2D nanostructures of various materials including metal oxides, graphene, metal dichalcogenides, phosphorene, BN and MXenes, have demonstrated significant potential for gas sensors. This review aims to provide the most recent advancements in utilization of various 2D nanomaterials for gas sensing. The common methods for the preparation of 2D nanostructures are briefly summarized first. The focus is then placed on the sensing performances provided by devices integrating 2D nanostructures. Strategies for optimizing the sensing features are also discussed. By combining both the experimental results and the theoretical studies available, structure-properties correlations are discussed. The conclusion gives some perspectives on the open challenges and future prospects for engineering advanced 2D nanostructures for high-performance gas sensors devices.

560 citations

Journal ArticleDOI
TL;DR: The review summarizes the most significant progresses related to room temperature gas sensing by using hierarchical oxide nanostructures, graphene and its derivatives and 2D transition metal dichalcogenides, highlighting the peculiar gas sensing behavior with enhanced selectivity, sensitivity and long-term stability.
Abstract: Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH3, H2, SO2, CO, and of vapors such as of acetone, formaldehyde or methanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed.

478 citations

Journal ArticleDOI
TL;DR: The most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs are reviewed and the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices are discussed.
Abstract: During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in opto-electronic devices, energy generation and storage, and sensing. Among their various extraordinary properties, 2DMs possess high surface area-to-volume ratios and ultra-high surface sensitivity to the environment, which are key characteristics for applications in chemical sensing. Furthermore, 2DMs’ superior electrical and optical properties, combined with their excellent mechanical characteristics such as robustness and flexibility, make these materials ideal components for the fabrication of a new generation of high-performance chemical sensors. Depending on the specific device, 2DMs can be tailored to interact with various chemical species at the non-covalent level, making them powerful platforms for fabricating devices exhibiting a high sensitivity towards detection of various analytes including gases, ions and small biomolecules. Here, we will review the most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices.

442 citations