scispace - formally typeset
Search or ask a question
Author

Serge I. Gorelsky

Bio: Serge I. Gorelsky is an academic researcher from University of Ottawa. The author has contributed to research in topics: Ligand & Hydroamination. The author has an hindex of 42, co-authored 126 publications receiving 8692 citations. Previous affiliations of Serge I. Gorelsky include University of York & University of Rhode Island.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comparison of these calculations with those carried out using Zerner's frequently used INDO/S method is described and discussed, and it is shown that for these species, and probably for all non-solvatochromic species in general, INDO-S is a good model reproducing very well the results of the computationally much more demanding but also more reliable TD-DFRT calculations.

896 citations

Journal ArticleDOI
TL;DR: The breadth of arenes whose reactivity can be predicted by the CMD mechanism indicates that it may be far more widespread than previously imagined.
Abstract: The concerted metalation−deprotonation mechanism predicts relative reactivity and regioselectivity for a diverse set of arenes spanning the entire spectrum of known palladium-catalyzed direct arylation coupling partners. An analysis following an active strain model provides a more complete portrayal of the important arene/catalyst parameters leading to a successful coupling. The breadth of arenes whose reactivity can be predicted by the CMD mechanism indicates that it may be far more widespread than previously imagined.

821 citations

Journal ArticleDOI
TL;DR: Concerted metalation-deprotonation (CMD) is now proposed to be the turnover limiting step and DFT calculations conducted on this system agree with a stepwise C-N bond reductive elimination/N-O bond oxidative addition mechanism to afford the desired heterocycle.
Abstract: Directing groups that can act as internal oxidants have recently been shown to be beneficial in metal-catalyzed heterocycle syntheses that undergo C−H functionalization. Pursuant to the rhodium(III)-catalyzed redox-neutral isoquinolone synthesis that we recently reported, we present in this article the development of a more reactive internal oxidant/directing group that can promote the formation of a wide variety of isoquinolones at room temperature while employing low catalyst loadings (0.5 mol %). In contrast to previously reported oxidative rhodium(III)-catalyzed heterocycle syntheses, the new conditions allow for the first time the use of terminal alkynes. Also, it is shown that the use of alkenes, including ethylene, instead of alkynes leads to the room temperature formation of 3,4-dihydroisoquinolones. Mechanistic investigations of this new system point to a change in the turnover limiting step of the catalytic cycle relative to the previously reported conditions. Concerted metalation−deprotonation ...

810 citations

Journal ArticleDOI
TL;DR: It is shown that nucleophilicity of thiophenes, evaluated by Hammett σ(p) parameters, correlates with each of the distortion-interaction parameters, which can assist in the development of predictive guidelines for the functionalization of C-H bonds catalyzed by transition metal catalysts.
Abstract: A comprehensive understanding of the C–H bond cleavage step by the concerted metalation–deprotonation (CMD) pathway is important in further development of cross-coupling reactions using different catalysts. Distortion–interaction analysis of the C–H bond cleavage over a wide range of (hetero)aromatics has been performed in an attempt to quantify the various contributions to the CMD transition state (TS). The (hetero)aromatics evaluated were divided in different categories to allow an easier understanding of their reactivity and to quantify activation characteristics of different arene substituents. The CMD pathway to the C–H bond cleavage for different classes of arenes is also presented, including the formation of pre-CMD intermediates and the analysis of bonding interactions in TS structures. The effects of remote C2 substituents on the reactivity of thiophenes were evaluated computationally and were corroborated experimentally with competition studies. We show that nucleophilicity of thiophenes, evalua...

351 citations

Journal ArticleDOI
TL;DR: Mechanistic and computational studies point to the involvement of a concerted, inner-sphere palladation-deprotonation pathway that is enabled by the presence of three-center agostic interactions at the transition state.
Abstract: Palladium-catalyzed alkane arylation reactions with aryl halides are described for the preparation of 2,2-dialkyl-dihydrobenzofuran substrates. These reactions occur in excellent yield and very high selectivity for the formation of one sole product arising from a reaction at nearby methyl groups. Mechanistic and computational studies point to the involvement of a concerted, inner-sphere palladation-deprotonation pathway that is enabled by the presence of three-center agostic interactions at the transition state. This mechanism accurately predicts the experimentally observed kinetic isotope effect as well as the site selectivity and should be useful in the design of new reactions and catalysts.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Abstract: Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

5,308 citations

Book
03 Aug 2010
TL;DR: The dye-sensitized solar cells (DSC) as discussed by the authors provides a technically and economically credible alternative concept to present day p-n junction photovoltaic devices, where light is absorbed by a sensitizer, which is anchored to the surface of a wide band semiconductor.
Abstract: The dye-sensitized solar cells (DSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor assume both the task of light absorption and charge carrier transport the two functions are separated here. Light is absorbed by a sensitizer, which is anchored to the surface of a wide band semiconductor. Charge separation takes place at the interface via photo-induced electron injection from the dye into the conduction band of the solid. Carriers are transported in the conduction band of the semiconductor to the charge collector. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrstalline morphology permits to harvest a large fraction of sunlight. Nearly quantitative conversion of incident photon into electric current is achieved over a large spectral range extending from the UV to the near IR region. Overall solar (standard AM 1.5) to current conversion efficiencies (IPCE) over 10% have been reached. There are good prospects to produce these cells at lower cost than conventional devices. Here we present the current state of the field, discuss new concepts of the dye-sensitized nanocrystalline solar cell (DSC) including heterojunction variants and analyze the perspectives for the future development of the technology.

4,159 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations