scispace - formally typeset
Search or ask a question
Author

Serge Kaliaguine

Other affiliations: University of New Brunswick
Bio: Serge Kaliaguine is an academic researcher from Laval University. The author has contributed to research in topics: Catalysis & Mesoporous material. The author has an hindex of 76, co-authored 465 publications receiving 21443 citations. Previous affiliations of Serge Kaliaguine include University of New Brunswick.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of sulfonated poly(ether ether ketone)s (SPEEKs) were prepared by sulfonation of commercial Victrex ® and Gatone ® PEEK for a comparative study of proton exchange membranes (PEM) intended for fuel cell applications.

880 citations

Journal ArticleDOI
TL;DR: In this paper, a series of composite membranes based on sulfonated polyether ether ketone with embedded heteropolycompounds were studied and their electrochemical and thermal properties were studied, showing that an increase in degree of sulfonation and introduction of these fillers resulted in increased Tg and enhanced membrane hydrophilicity, bringing about a substantial gain in proton conductivity.

838 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive review of the literature dealing with the class of catalytic membrane reactors which involves hydrogen permeable membranes made of palladium and palladium alloys is presented.
Abstract: This paper is an extensive review of the literature dealing with the class of catalytic membrane reactors which involves hydrogen permeable membranes made of palladium and palladium alloys. The fundamental factors which affect hydrogen permeability are first discussed. A classification of the many reactions which have been conducted in such reactors at both laboratory and commercial scales is then presented. The various techniques for the preparation of palladium- based membranes are described and the literature on modeling and design of these reactors is also reviewed.

651 citations

Journal ArticleDOI
TL;DR: In this paper, a review paper deals with proven and potential applications of mesoporous molecular sieves in catalysis, and is divided into two parts, respectively, dedicated to the design of solid catalysts and catalyst supports and to some relevant examples of catalytic processes.
Abstract: This review paper deals with proven and potential applications of mesoporous molecular sieves in catalysis. In addition to introduction and conclusion, the text is divided into two parts, respectively, dedicated to the design of solid catalysts and catalyst supports and to some relevant examples of catalytic processes.

440 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: In this article, a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites is presented, and the influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail.

4,160 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
30 Apr 2004-Science
TL;DR: A simple extension of the process yielded platinum–cobalt oxide yolk-shell nanostructures, which may serve as nanoscale reactors in catalytic applications, and provides a general route to the synthesis of hollow nanostructureures of a large number of compounds.
Abstract: Hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form because of the difference in diffusion rates between two components in a diffusion couple. Starting with cobalt nanocrystals, we show that their reaction in solution with oxygen and either sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of a large number of compounds. A simple extension of the process yielded platinum-cobalt oxide yolk-shell nanostructures, which may serve as nanoscale reactors in catalytic applications.

3,059 citations