scispace - formally typeset
Search or ask a question
Author

Sergei G. Romanov

Bio: Sergei G. Romanov is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Photonic crystal & Photoluminescence. The author has an hindex of 29, co-authored 139 publications receiving 2577 citations. Previous affiliations of Sergei G. Romanov include University of Wuppertal & University College Cork.


Papers
More filters
Journal ArticleDOI
TL;DR: Colloidal semiconductor nanocrystals are promising luminophores for creating a new generation of electroluminescence devices, and potential advantages associated with nanocrystal-based devices, such as a spectrally pure emission color, which will certainly merit future research.
Abstract: Colloidal semiconductor nanocrystals are promising luminophores for creating a new generation of electroluminescence devices. Research on semiconductor nanocrystal based light-emitting diodes (LEDs) has made remarkable advances in just one decade: the external quantum efficiency has improved by over two orders of magnitude and highly saturated color emission is now the norm. Although the device efficiencies are still more than an order of magnitude lower than those of the purely organic LEDs there are potential advantages associated with nanocrystal-based devices, such as a spectrally pure emission color, which will certainly merit future research. Further developments of nanocrystal-based LEDs will be improving material stability, understanding and controlling chemical and physical phenomena at the interfaces, and optimizing charge injection and charge transport.

313 citations

Journal ArticleDOI
TL;DR: Calculations of the photonic band structure and simulations of the reflectance spectra agree well with experimental observations, including Fabry-Perot oscillations ofThe reflectivity and branching of the angular dispersion of the Bragg resonances with increase of the angle of incidence of the light beam.
Abstract: Photonic crystals in the form of large area thin films consisting of closely packed polymethylmethacrylate beads were sedimented on glass substrates. The high ordering of the opaline films made it possible to observe a number of fine features in the optical diffraction, including Fabry-Perot oscillations of the reflectivity and branching of the angular dispersion of the Bragg resonances with increase of the angle of incidence of the light beam. Results of calculations of the photonic band structure and simulations of the reflectance spectra agree well with experimental observations.

132 citations

Journal ArticleDOI
TL;DR: This work considers different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films.
Abstract: We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.

125 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe ways to construct multilayer opaline heterostructures composed from functional opal layers of spheres with different lattice constants, and describe various monodisperse coll...
Abstract: This paper describes ways to multilayer opaline films (opaline heterostructures) composed from functional opal layers of spheres with different lattice constants. At first various monodisperse coll...

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals.
Abstract: In the coming decade, the ability to sense and detect the state of biological systems and living organisms optically, electrically and magnetically will be radically transformed by developments in materials physics and chemistry. The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors. These new systems will be capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals, enabling a diversity of simultaneous experiments, as well as better crosschecks and controls.

2,960 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Abstract: This Review article summarizes the key advantages of using quantum dots (QDs) as luminophores in light-emitting devices (LEDs) and outlines the operating mechanisms of four types of QD-LED. The key scientific and technological challenges facing QD-LED commercialization are identified, together with on-going strategies to overcome these challenges.

2,086 citations