scispace - formally typeset
Search or ask a question
Author

Sergei V. Kalinin

Bio: Sergei V. Kalinin is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Ferroelectricity & Piezoresponse force microscopy. The author has an hindex of 95, co-authored 999 publications receiving 37022 citations. Previous affiliations of Sergei V. Kalinin include Southern Illinois University Carbondale & Louisiana State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3) shows that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall.
Abstract: Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features. Domain walls may be important in future electronic devices, given their small size as well as the fact that their location can be controlled. In the case of insulating multiferroic oxides, domain walls are now discovered to be electrically conductive, suggesting their possible use in logic and memory applications.

1,208 citations

Journal ArticleDOI
TL;DR: The spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) is probed at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries.
Abstract: The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.

524 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived analytical descriptions of the complex interactions between a small tip and ferroelectric surface for several sets of limiting conditions, and used these results to construct ''piezoresponse contrast mechanism maps'' that correlate the imaging conditions with the PFM contrast mechanisms.
Abstract: In order to determine the origin of image contrast in piezoresponse force microscopy (PFM), analytical descriptions of the complex interactions between a small tip and ferroelectric surface are derived for several sets of limiting conditions. Image charge calculations are used to determine potential and field distributions at the tip-surface junction between a spherical tip and an anisotropic dielectric half plane. Methods of Hertzian mechanics are used to calculate the response amplitude in the electrostatic regime. In the electromechanical regime, the limits of strong (classical) and weak (field-induced) indentation are established and the relative contributions of electroelastic constants are determined. These results are used to construct ``piezoresponse contrast mechanism maps'' that correlate the imaging conditions with the PFM contrast mechanisms. Conditions for quantitative PFM imaging are set forth. Variable-temperature PFM imaging of domain structures in ${\mathrm{BaTiO}}_{3}$ and the temperature dependence of the piezoresponse are compared with Ginzburg-Devonshire theory. An approach to the simultaneous acquisition of piezoresponse and surface potential images is proposed.

490 citations

Journal ArticleDOI
TL;DR: In this article, a dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed, which allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible.
Abstract: A dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed. This method allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible. This includes techniques with non-acoustic driving where the phase of the driving force is frequency and/or position dependent. An example of the latter is piezoresponse force microscopy (PFM), where the resonant frequency of the cantilever is strongly dependent on the contact stiffness of the tip–surface junction and the local mechanical properties, but the spatial variability of the drive phase rules out the use of a phase locked loop. Combined with high-voltage switching and imaging, dual-frequency, resonance-tracking PFM allows reliable studies of electromechanical and elastic properties and polarization dynamics in a broad range of inorganic and biological systems, and is illustrated using lead zirconate–titanate, rat tail collagen, and native and switched ferroelectric domains in lithium niobate.

467 citations

Journal ArticleDOI
TL;DR: The observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping opens the door to merging magnetoelectrics and Magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic Bi FeO3.
Abstract: Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of approximately 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

466 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations