scispace - formally typeset
Search or ask a question
Author

Sergei V. Kotenko

Bio: Sergei V. Kotenko is an academic researcher from Rutgers University. The author has contributed to research in topics: Receptor & Interferon. The author has an hindex of 33, co-authored 70 publications receiving 7088 citations. Previous affiliations of Sergei V. Kotenko include University of Medicine and Dentistry of New Jersey & Ruhr University Bochum.


Papers
More filters
Journal ArticleDOI
TL;DR: The identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state and may contribute to antiviral or other defenses by a mechanism similar to, but independent of, type I IFNs.
Abstract: We report here the identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state. Three closely positioned genes on human chromosome 19 encode distinct but paralogous proteins, which we designate interferon-lambda1 (IFN-lambda1), IFN-lambda2 and IFN-lambda3 (tentatively designated as IL-29, IL-28A and IL-28B, respectively, by HUGO). The expression of IFN-lambda mRNAs was inducible by viral infection in several cell lines. We identified a distinct receptor complex that is utilized by all three IFN-lambda proteins for signaling and is composed of two subunits, a receptor designated CRF2-12 (also designated as IFN-lambdaR1) and a second subunit, CRF2-4 (also known as IL-10R2). Both receptor chains are constitutively expressed on a wide variety of human cell lines and tissues and signal through the Jak-STAT (Janus kinases-signal transducers and activators of transcription) pathway. This receptor-ligand system may contribute to antiviral or other defenses by a mechanism similar to, but independent of, type I IFNs.

1,725 citations

Journal ArticleDOI
TL;DR: Dose- and time-dependent HCV inhibition and kinetics of IFN-λ-mediated signal transducers and activators of transcription (STAT) activation and induction of potential effector genes were distinct from those ofIFN-α.

557 citations

Journal ArticleDOI
TL;DR: Sharing of the common IL-10R2 chain between the IL- 10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-9-related ligands similar to the shared use of the gamma common chain by several cytokines.

436 citations

Journal ArticleDOI
TL;DR: IL-10-related cytokines include IL-20 and IL-22, which induce, respectively, keratinocyte proliferation and acute phase production by hepatocytes, as well as IL-19, melanoma differentiation-associated gene 7, and AK155, three cytokines for which no activity nor receptor complex has been described thus far.
Abstract: IL-10-related cytokines include IL-20 and IL-22, which induce, respectively, keratinocyte proliferation and acute phase production by hepatocytes, as well as IL-19, melanoma differentiation-associated gene 7, and AK155, three cytokines for which no activity nor receptor complex has been described thus far. Here, we show that mda-7 and IL-19 bind to the previously described IL-20R complex, composed by cytokine receptor family 2-8/IL-20R alpha and DIRS1/IL-20R beta (type I IL-20R). In addition, mda-7 and IL-20, but not IL-19, bind to another receptor complex, composed by IL-22R and DIRS1/ IL20R beta (type II IL-20R). In both cases, binding of the ligands results in STAT3 phosphorylation and activation of a minimal promoter including STAT-binding sites. Taken together, these results demonstrate that: 1) IL-20 induces STAT activation through IL-20R complexes of two types; 2) mda-7 and IL-20 redundantly signal through both complexes; and 3) IL-19 signals only through the type I IL-20R complex.

415 citations

Journal ArticleDOI
TL;DR: Ex expression of the type III IFNs (IFN-lambdas) and their primary biological activity are very similar to the type I IFNs, however, unlike IFN-alpha receptors which are broadly expressed on most cell types, including leukocytes, IFN
Abstract: The discovery and initial description of the interferon-λ (IFN-λ) family in early 2003 opened an exciting new chapter in the field of IFN research. There are 3 IFN-λ genes that encode 3 distinct but highly related proteins denoted IFN-λ1, -λ2, and -λ3. These proteins are also known as interleukin-29 (IL-29), IL-28A, and IL-28B, respectively. Collectively, these 3 cytokines comprise the type III subset of IFNs. They are distinct from both type I and type II IFNs for a number of reasons, including the fact that they signal through a heterodimeric receptor complex that is different from the receptors used by type I or type II IFNs. Although type I IFNs (IFN-α/β) and type III IFNs (IFN-λ) signal via distinct receptor complexes, they activate the same intracellular signaling pathway and many of the same biological activities, including antiviral activity, in a wide variety of target cells. Consistent with their antiviral activity, expression of the IFN-λ genes and their corresponding proteins is inducible by infection with many types of viruses. Therefore, expression of the type III IFNs (IFN-λs) and their primary biological activity are very similar to the type I IFNs. However, unlike IFN-α receptors which are broadly expressed on most cell types, including leukocytes, IFN-λ receptors are largely restricted to cells of epithelial origin. The potential clinical importance of IFN-λ as a novel antiviral therapeutic agent is already apparent. In addition, preclinical studies by several groups indicate that IFN-λ may also be useful as a potential therapeutic agent for other clinical indications, including certain types of cancer.

404 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
17 Sep 2009-Nature
TL;DR: It is reported that a genetic polymorphism near the IL28B gene, encoding interferon-λ-3 (IFN-α-2a) is associated with an approximately twofold change in response to treatment, both among patients of European ancestry and African-Americans.
Abstract: Chronic infection with hepatitis C virus (HCV) affects 170 million people worldwide and is the leading cause of cirrhosis in North America. Although the recommended treatment for chronic infection involves a 48-week course of peginterferon-alpha-2b (PegIFN-alpha-2b) or -alpha-2a (PegIFN-alpha-2a) combined with ribavirin (RBV), it is well known that many patients will not be cured by treatment, and that patients of European ancestry have a significantly higher probability of being cured than patients of African ancestry. In addition to limited efficacy, treatment is often poorly tolerated because of side effects that prevent some patients from completing therapy. For these reasons, identification of the determinants of response to treatment is a high priority. Here we report that a genetic polymorphism near the IL28B gene, encoding interferon-lambda-3 (IFN-lambda-3), is associated with an approximately twofold change in response to treatment, both among patients of European ancestry (P = 1.06 x 10(-25)) and African-Americans (P = 2.06 x 10(-3)). Because the genotype leading to better response is in substantially greater frequency in European than African populations, this genetic polymorphism also explains approximately half of the difference in response rates between African-Americans and patients of European ancestry.

3,529 citations

Journal ArticleDOI
TL;DR: It is anticipated that an increased understanding of the contributions of these recently identified pathways will advance current thinking about how interferons work.
Abstract: Interferons are cytokines that have antiviral, antiproliferative and immunomodulatory effects. Because of these important properties, in the past two decades, major research efforts have been undertaken to understand the signalling mechanisms through which these cytokines induce their effects. Since the original discovery of the classical JAK (Janus activated kinase)-STAT (signal transducer and activator of transcription) pathway of signalling, it has become clear that the coordination and cooperation of multiple distinct signalling cascades - including the mitogen-activated protein kinase p38 cascade and the phosphatidylinositol 3-kinase cascade - are required for the generation of responses to interferons. It is anticipated that an increased understanding of the contributions of these recently identified pathways will advance our current thinking about how interferons work.

2,912 citations

Journal ArticleDOI
TL;DR: This review begins by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production and describes ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the Jak-STAT pathway.
Abstract: Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.

2,207 citations

Journal ArticleDOI
TL;DR: A genome-wide association study to null virological response (NVR) in the treatment of patients with hepatitis C virus (HCV) genotype 1 within a Japanese population is reported.
Abstract: Masashi Mizokami and colleagues report a genome-wide association study to hepatitis C treatment response in two Japanese cohorts. They report common variants at IL28B associated with sustained as well as null virologic response following pegylated interferon-alpha and ribavirin combined therapy.

2,097 citations