scispace - formally typeset
Search or ask a question
Author

Sergey Gavrilets

Bio: Sergey Gavrilets is an academic researcher from National Institute for Mathematical and Biological Synthesis. The author has contributed to research in topics: Population & Genetic algorithm. The author has an hindex of 57, co-authored 137 publications receiving 11640 citations. Previous affiliations of Sergey Gavrilets include University of California, Davis & University of Tennessee.


Papers
More filters
Book
26 Jul 2004
TL;DR: This book builds for the first time a general, quantitative theory for the origin of species based on the notion of fitness landscapes introduced by Sewall Wright in 1932, generalizing this notion to explore the consequences of the huge dimensionality of Fitness landscapes that correspond to biological systems.
Abstract: The origin of species has fascinated both biologists and the general public since the publication of Darwin's Origin of Species in 1859. Significant progress in understanding the process was achieved in the "modern synthesis," when Theodosius Dobzhansky, Ernst Mayr, and others reconciled Mendelian genetics with Darwin's natural selection. Although evolutionary biologists have developed significant new theory and data about speciation in the years since the modern synthesis, this book represents the first systematic attempt to summarize and generalize what mathematical models tell us about the dynamics of speciation. Fitness Landscapes and the Origin of Species presents both an overview of the forty years of previous theoretical research and the author's new results. Sergey Gavrilets uses a unified framework based on the notion of fitness landscapes introduced by Sewall Wright in 1932, generalizing this notion to explore the consequences of the huge dimensionality of fitness landscapes that correspond to biological systems. In contrast to previous theoretical work, which was based largely on numerical simulations, Gavrilets develops simple mathematical models that allow for analytical investigation and clear interpretation in biological terms. Covering controversial topics, including sympatric speciation and the effects of sexual conflict on speciation, this book builds for the first time a general, quantitative theory for the origin of species.

1,319 citations

Journal ArticleDOI
06 Feb 2009-Science
TL;DR: Using modeling approaches, 10 general patterns concerning the temporal, spatial, and genetic/morphological properties of adaptive radiation are identified.
Abstract: Biologists have long been fascinated by the exceptionally high diversity displayed by some evolutionary groups. Adaptive radiation in such clades is not only spectacular, but is also an extremely complex process influenced by a variety of ecological, genetic, and developmental factors and strongly dependent on historical contingencies. Using modeling approaches, we identify 10 general patterns concerning the temporal, spatial, and genetic/morphological properties of adaptive radiation. Some of these are strongly supported by empirical work, whereas for others, empirical support is more tentative. In almost all cases, more data are needed. Future progress in our understanding of adaptive radiation will be most successful if theoretical and empirical approaches are integrated, as has happened in other areas of evolutionary biology.

620 citations

Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A simple mathematical model is developed describing coevolutionary dynamics of male and female traits involved in reproduction that shows that continual change in such traits at a constant speed is expected whenever females experience fitness loss from having too many compatible males.
Abstract: A growing amount of experimental data indicates extremely rapid evolution of traits and proteins related to fertilization in many diverging taxa These data come from studies of sperm or pollen competition between closely related species, and from molecular studies of fertilization proteins The positive selection for evolutionary novelty that appears to be acting on fertilization systems seems paradoxical because successful reproduction requires the close matching of female and male traits It has been suggested that perpetual coevolution between the sexes can result from sexual conflict in mating Sexual conflict occurs when characteristics that enhance the reproductive success of one sex reduce the fitness of the other sex Numerous examples of sexual conflict resulting from sensory exploitation, polyspermy and the cost of mating have been discussed in detail The potential for coevolution due to such conflict has been evaluated experimentally Here I develop a simple mathematical model describing coevolutionary dynamics of male and female traits involved in reproduction The model shows that continual change in such traits at a constant speed is expected whenever females (or eggs) experience fitness loss from having too many compatible males (or sperms) The plausibility of runaway coevolution increases with increasing population size Rapid evolution of reproductive barriers driven by sexual conflict may explain increased speciation rates after colonization of new habitats ('adaptive radiation') and high species richness in resource-rich environments

529 citations

Journal ArticleDOI
TL;DR: This work describes the Bateson‐Dobzhansky‐Muller (BDM) model of speciation that does not require overcoming selection and describes exactly how the probability of speciation, the average waiting time to speciation, and the average duration of Speciation depend on the mutation and migration rates, population size, and selection for local adaptation.
Abstract: Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong.

525 citations

Journal ArticleDOI
TL;DR: This work builds and explores a large-scale, stochastic, spatially explicit, individual-based model of adaptive radiation driven by adaptation to multidimensional ecological niches, and shows that a great majority of speciation events are concentrated early in the phylogeny.
Abstract: Adaptive radiation is defined as the evolution of ecological and phenotypic diversity within a rapidly multiplying lineage. When it occurs, adaptive radiation typically follows the colonization of a new environment or the establishment of a “key innovation,” which opens new ecological niches and/or new paths for evolution. Here, we take advantage of recent developments in speciation theory and modern computing power to build and explore a large-scale, stochastic, spatially explicit, individual-based model of adaptive radiation driven by adaptation to multidimensional ecological niches. We are able to model evolutionary dynamics of populations with hundreds of thousands of sexual diploid individuals over a time span of 100,000 generations assuming realistic mutation rates and allowing for genetic variation in a large number of both selected and neutral loci. Our results provide theoretical support and explanation for a number of empirical patterns including “area effect,” “overshooting effect,” and “least action effect,” as well as for the idea of a “porous genome.” Our findings suggest that the genetic architecture of traits involved in the most spectacular radiations might be rather simple. We show that a great majority of speciation events are concentrated early in the phylogeny. Our results emphasize the importance of ecological opportunity and genetic constraints in controlling the dynamics of adaptive radiation.

406 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal ArticleDOI
TL;DR: The existence of behavioral syndromes focuses the attention of behavioral ecologists on limited (less than optimal) behavioral plasticity and behavioral carryovers across situations, rather than on optimal plasticity in each isolated situation.
Abstract: Recent studies suggest that populations and species often exhibit behavioral syndromes; that is, suites of correlated behaviors across situations. An example is an aggression syndrome where some individuals are more aggressive, whereas others are less aggressive across a range of situations and contexts. The existence of behavioral syndromes focuses the attention of behavioral ecologists on limited (less than optimal) behavioral plasticity and behavioral carryovers across situations, rather than on optimal plasticity in each isolated situation. Behavioral syndromes can explain behaviors that appear strikingly non-adaptive in an isolated context (e.g. inappropriately high activity when predators are present, or excessive sexual cannibalism). Behavioral syndromes can also help to explain the maintenance of individual variation in behavioral types, a phenomenon that is ubiquitous, but often ignored. Recent studies suggest that the behavioral type of an individual, population or species can have important ecological and evolutionary implications, including major effects on species distributions, on the relative tendencies of species to be invasive or to respond well to environmental change, and on speciation rates. Although most studies of behavioral syndromes to date have focused on a few organisms, mainly in the laboratory, further work on other species, particularly in the field, should yield numerous new insights.

2,954 citations