scispace - formally typeset
Search or ask a question
Author

Sergey Leikin

Bio: Sergey Leikin is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Type I collagen & Osteogenesis imperfecta. The author has an hindex of 45, co-authored 92 publications receiving 6109 citations. Previous affiliations of Sergey Leikin include University of Maryland, Baltimore & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity and argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding.
Abstract: Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37°C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36°C. Refolding of full-length, native collagen triple helices does occur, but only below 30°C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.

502 citations

Journal ArticleDOI
TL;DR: The first five cases of a new recessive bone disorder resulting from null LEPRE1 alleles are presented; its phenotype overlaps with lethal/severe osteogenesis imperfecta but has distinctive features and a mutant allele from West Africa occurs in four of five cases.
Abstract: Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta

413 citations

Journal ArticleDOI
TL;DR: Three of 10 children with lethal or severe osteogenesis imperfecta were found to have a recessive condition resulting in CRTAP deficiency, suggesting that prolyl 3-hydroxylation of type I collagen is important for bone formation.
Abstract: Classic osteogenesis imperfecta, an autosomal dominant disorder associated with osteoporosis and bone fragility, is caused by mutations in the genes for type I collagen. A recessive form of the disorder has long been suspected. Since the loss of cartilage-associated protein (CRTAP), which is required for post-translational prolyl 3-hydroxylation of collagen, causes severe osteoporosis in mice, we investigated whether CRTAP deficiency is associated with recessive osteogenesis imperfecta. Three of 10 children with lethal or severe osteogenesis imperfecta, who did not have a primary collagen defect yet had excess post-translational modification of collagen, were found to have a recessive condition resulting in CRTAP deficiency, suggesting that prolyl 3-hydroxylation of type I collagen is important for bone formation.

302 citations

Journal ArticleDOI
TL;DR: The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and polyand mesomorphic transitions.
Abstract: Helices are essential building blocks of living organisms, be they molecular fragments of proteins -helices , macromolecules DNA and collagen , or multimolecular assemblies microtubules and viruses . Their interactions are involved in packing of meters of genetic material within cells and phage heads, recognition of homologous genes in recombination and DNA repair, stability of tissues, and many other processes. Helical molecules form a variety of mesophases in vivo and in vitro. Recent structural studies, direct measurements of intermolecular forces, single-molecule manipulations, and other experiments have accumulated a wealth of information and revealed many puzzling physical phenomena. It is becoming increasingly clear that in many cases the physics of biological helices cannot be described by theories that treat them as simple, unstructured polyelectrolytes. The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and polyand mesomorphic transitions.

293 citations


Cited by
More filters
Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: The fibrillar structure of type I collagen-the prototypical collagen fibril-has been revealed in detail and will guide further development of artificial collagenous materials for biomedicine and nanotechnology.
Abstract: Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen—the prototypical collagen fibril—has been revealed in detail. Artificial collagen fibrils that display some properties of natural collagen fibrils are now accessible using chemical synthesis and self-assembly. A rapidly emerging understanding of the mechanical and structural properties of native collagen fibrils will guide further development of artificial collagenous materials for biomedicine and nanotechnology.

2,742 citations

Journal ArticleDOI
01 Mar 1995-Proteins
TL;DR: The work unifies several previously proposed ideas concerning the mechanism protein folding and delimits the regions of validity of these ideas under different thermodynamic conditions.
Abstract: The understanding, and even the description of protein folding is impeded by the complexity of the process. Much of this complexity can be described and understood by taking a statistical approach to the energetics of protein conformation, that is, to the energy landscape. The statistical energy landscape approach explains when and why unique behaviors, such as specific folding pathways, occur in some proteins and more generally explains the distinction between folding processes common to all sequences and those peculiar to individual sequences. This approach also gives new, quantitative insights into the interpretation of experiments and simulations of protein folding thermodynamics and kinetics. Specifically, the picture provides simple explanations for folding as a two-state first-order phase transition, for the origin of metastable collapsed unfolded states and for the curved Arrhenius plots observed in both laboratory experiments and discrete lattice simulations. The relation of these quantitative ideas to folding pathways, to uniexponential vs. multiexponential behavior in protein folding experiments and to the effect of mutations on folding is also discussed. The success of energy landscape ideas in protein structure prediction is also described. The use of the energy landscape approach for analyzing data is illustrated with a quantitative analysis of some recent simulations, and a qualitative analysis of experiments on the folding of three proteins. The work unifies several previously proposed ideas concerning the mechanism protein folding and delimits the regions of validity of these ideas under different thermodynamic conditions. © 1995 Wiley-Liss, Inc.

2,437 citations

Journal ArticleDOI
TL;DR: Fibronectin mediates a wide variety of cellular interactions with the extracellular matrix (ECM) and plays important roles in cell adhesion, migration, growth and differentiation.
Abstract: Fibronectin (FN) mediates a wide variety of cellular interactions with the extracellular matrix (ECM) and plays important roles in cell adhesion, migration, growth and differentiation ( [Mosher, 1989][1]; [Carsons, 1989][2]; [Hynes, 1990][3]; [Yamada and Clark, 1996][4]). FN is widely expressed by

1,927 citations

Journal ArticleDOI
TL;DR: The collagen family comprises 28 members that contain at least one triple-helical domain and plays structural roles and contribute to mechanical properties, organization, and shape of tissues.
Abstract: Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions.

1,399 citations