scispace - formally typeset
Search or ask a question
Author

Sergey Litvinov

Bio: Sergey Litvinov is an academic researcher from ETH Zurich. The author has contributed to research in topics: Dissipative particle dynamics & Shear flow. The author has an hindex of 12, co-authored 33 publications receiving 543 citations. Previous affiliations of Sergey Litvinov include Ruhr University Bochum & Technische Universität München.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors apply smoothed dissipative particle dynamics (SDPD) to model solid particles in suspension, which is a thermodynamically consistent version of smoothed particle hydrodynamics.
Abstract: We apply smoothed dissipative particle dynamics (SDPD) [Espanol and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the dif...

94 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a membrane-less architecture that enables unprecedented throughput by 3D printing a device that combines components such as the flow plates and the fluidic ports in a monolithic part, while at the same time providing tight tolerances and smooth surfaces for precise flow conditioning.
Abstract: Renewables challenge the management of energy supply and demand due to their intermittency. A promising solution is the direct conversion of the excess electrical energy into valuable chemicals in electrochemical reactors that are inexpensive, scalable, and compatible with irregular availability of electrical power. Membrane-less electrolyzers, deployed on a microfluidic platform, were recently shown to hold great promise for efficient electrolysis and cost-effective operation. The elimination of the membrane increases the reactor lifetime, reduces fabrication costs, and enables the deployment of liquid electrolytes with ionic conductivities that surpass those allowed by solid membranes. Here, we demonstrate a membrane-less architecture that enables unprecedented throughput by 3D printing a device that combines components such as the flow plates and the fluidic ports in a monolithic part, while at the same time, providing tight tolerances and smooth surfaces for precise flow conditioning. We show that inertial fluidic forces are effective even in millifluidic regimes and, therefore, are utilized to control the two-phase flows inside the device and prevent cross-contamination of the products. Simulations provide insight on governing fluid dynamics of coalescing bubbles and their rapid jumps away from the electrodes and help identify three key mechanisms for their fast and intriguing return towards the electrodes. Experiments and simulations are used to demonstrate the efficiency of the inertial separation mechanism in millichannels and at higher flow rates than in microchannels. We analyze the performance of the present device for two reactions: water splitting and the chlor-alkali process, and find product purities of more than 99% and Faradaic efficiencies of more than 90%. The present membrane-less reactor – containing more efficient catalysts – provides close to 40 times higher throughput than its microfluidic counterpart and paves the way for realization of cost-effective and scalable electrochemical stacks that meet the performance and price targets of the renewable energy sector.

73 citations

Journal ArticleDOI
TL;DR: This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem.
Abstract: We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Espanol and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10 microm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius R_{G} and polymer stretch X as functions of the channel gap when normalized properly.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the rheology of dense suspensions of non-Brownian repulsive particles is studied and it is shown that the strength of hydrodynamic shear thickening is primarily determined by the distribution of hydrynamic clusters formed during shear flow while confinement plays a geometrical role and indirectly affects viscosity.
Abstract: We study the rheology of dense suspensions of non-Brownian repulsive particles. The suspensions consist of two-dimensional discoidal particles confined by walls orthogonal to the shear gradient direction and are simulated by the method of smoothed particle hydrodynamics. The strength of hydrodynamic shear thickening is primarily determined by the distribution of hydrodynamic clusters formed during shear flow while confinement plays a geometrical role and indirectly affects viscosity. Under strong confinement a percolating network of clusters develops into a jamming structure at high shear rate and as a result, the viscosity increases substantially. Extrapolating the viscosity to the limit of very weak confinement shows that confinement is essential to observe hydrodynamic shear thickening in these non-Brownian suspensions.

51 citations

Journal ArticleDOI
09 Aug 2006-Langmuir
TL;DR: The exact solutions provide a method to obtain more information on the heats, entropy, and heterogeneity of the catalyst surface from the calorimetric measurement of the heat of adsorption.
Abstract: Adsorption on heterogeneous surfaces with three basic energy distribution models (uniform model, exponential model, and normal-like model) is studied. Exact analytical solutions of the adsorption isotherms and the heats of adsorption are derived for the uniform and exponential models, and, with these solutions including a numerical solution for the normal-like model, the behavior of the differential heat of adsorption and the "apparent" standard adsorption entropy concerning the overall surface is described as a function of coverage and temperature. The approximations underlying the isotherms and heats of adsorption in the Temkin, Freundlich, and Langmuir-Freundlich types of adsorption are rationalized. By comparing these empirical formulas to the exact solutions, the level of these approximations is found to be identical, which is similar to the "condensation approximation". Their preconditions are that either the temperature is low enough, or the surface is strongly heterogeneous. Generally, they are suitable for the middle coverage range. The exact solutions provide a method to obtain more information on the heats, entropy, and heterogeneity of the catalyst surface from the calorimetric measurement of the heat of adsorption.

48 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a quantitative model for estimating the adsorbed gas estimate in the presence of moisture and thermal maturity of the gas-sorption ratio in shales.

974 citations

Journal ArticleDOI
TL;DR: In this paper, a series of CH 4 adsorption experiments on clay-rich rocks were conducted at 35, 50, and 65°C and at CH 4 pressure up to 15 MPa under dry conditions.

518 citations

Journal ArticleDOI
TL;DR: It is proposed that the active sites for CO reduction on OD-Cu surfaces are strong CO binding sites that are supported by grain boundaries that are distinct from the terraces and stepped sites found on polycrystalline Cu foil.
Abstract: CO electroreduction activity on oxide-derived Cu (OD-Cu) was found to correlate with metastable surface features that bind CO strongly. OD-Cu electrodes prepared by H2 reduction of Cu2O precursors reduce CO to acetate and ethanol with nearly 50% Faradaic efficiency at moderate overpotential. Temperature-programmed desorption of CO on OD-Cu revealed the presence of surface sites with strong CO binding that are distinct from the terraces and stepped sites found on polycrystalline Cu foil. After annealing at 350 °C, the surface-area corrected current density for CO reduction is 44-fold lower and the Faradaic efficiency is less than 5%. These changes are accompanied by a reduction in the proportion of strong CO binding sites. We propose that the active sites for CO reduction on OD-Cu surfaces are strong CO binding sites that are supported by grain boundaries. Uncovering these sites is a first step toward understanding the surface chemistry necessary for efficient CO electroreduction.

470 citations

Journal ArticleDOI
TL;DR: Dissipative particle dynamics (DPD) is a class of models and computational algorithms developed to address mesoscale problems in complex fluids and soft matter in general.
Abstract: Dissipative particle dynamics (DPD) belongs to a class of models and computational algorithms developed to address mesoscale problems in complex fluids and soft matter in general. It is based on the notion of particles that represent coarse-grained portions of the system under study and allow, therefore, reaching time and length scales that would be otherwise unreachable from microscopic simulations. The method has been conceptually refined since its introduction almost twenty five years ago. This perspective surveys the major conceptual improvements in the original DPD model, along with its microscopic foundation, and discusses outstanding challenges in the field. We summarize some recent advances and suggest avenues for future developments.

386 citations