scispace - formally typeset
Search or ask a question
Author

Sergey P. Laptenok

Bio: Sergey P. Laptenok is an academic researcher from University of East Anglia. The author has contributed to research in topics: Förster resonance energy transfer & Flavin group. The author has an hindex of 20, co-authored 37 publications receiving 1944 citations. Previous affiliations of Sergey P. Laptenok include University of Amsterdam & VU University Amsterdam.

Papers
More filters
Journal ArticleDOI
TL;DR: Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data which features interactive and dynamic data inspection and interactive viewing of results.
Abstract: In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the specification of models and viewing of analysis results. Instead, Glotaran provides a graphical user interface which features interactive and dynamic data inspection, easier -- assisted by the user interface -- model specification and interactive viewing of results. The interactivity component is especially helpful when working with large, multi-dimensional datasets as often result from time-resolved spectroscopy measurements, allowing the user to easily pre-select and manipulate data before analysis and to quickly zoom in to regions of interest in the analysis results. Glotaran has been developed on top of the NetBeans rich client platform and communicates with R through the Java-to-R interface Rserve. The background and the functionality of the application are described here. In addition, the design, development and implementation process of Glotaran is documented in a generic way.

994 citations

Journal ArticleDOI
TL;DR: The proposed MSClust algorithm is based on the subtractive fuzzy clustering method that allows unsupervised determination of a number of metabolites in a data set and can deal with uncertain memberships of mass peaks in overlapping mass spectra.
Abstract: Mass peak alignment (ion-wise alignment) has recently become a popular method for unsupervised data analysis in untargeted metabolic profiling Here we present MSClust—a software tool for analysis GC–MS and LC–MS datasets derived from untargeted profiling MSClust performs data reduction using unsupervised clustering and extraction of putative metabolite mass spectra from ion-wise chromatographic alignment data The algorithm is based on the subtractive fuzzy clustering method that allows unsupervised determination of a number of metabolites in a data set and can deal with uncertain memberships of mass peaks in overlapping mass spectra This approach is based purely on the actual information present in the data and does not require any prior metabolite knowledge MSClust can be applied for both GC–MS and LC–MS alignment data sets

197 citations

Journal ArticleDOI
TL;DR: The utility of the TIMP package for R to solve parameter estimation problems arising in FLIM image analysis is demonstrated and the applicability of the partitioned variable projection algorithm implemented in TIMP to the problem domain is demonstrated.
Abstract: Fluorescence Lifetime Imaging Microscopy (FLIM) allows fluorescence lifetime images of biological objects to be collected at 250 nm spatial resolution and at (sub-)nanosecond temporal resolution. Often ncomp kinetic processes underlie the observed fluorescence at all locations, but the intensity of the fluorescence associated with each process varies per-location, i.e., per-pixel imaged. Then the statistical challenge is global analysis of the image: use of the fluorescence decay in time at all locations to estimate the ncomp lifetimes associated with the kinetic processes, as well as the amplitude of each kinetic process at each location. Given that typical FLIM images represent on the order of 102 timepoints and 103 locations, meeting this challenge is computationally intensive. Here the utility of the TIMP package for R to solve parameter estimation problems arising in FLIM image analysis is demonstrated. Case studies on simulated and real data evidence the applicability of the partitioned variable projection algorithm implemented in TIMP to the problem domain, and showcase options included in the package for the visual validation of models for FLIM data.

122 citations

Journal ArticleDOI
TL;DR: A methodology is described for the quantitative determination of Förster resonance energy transfer in live cells using the rise time of acceptor fluorescence as determined with fluorescence lifetime imaging microscopy (FLIM).
Abstract: A methodology is described for the quantitative determination of Forster resonance energy transfer (FRET) in live cells using the rise time of acceptor fluorescence as determined with fluorescence lifetime imaging microscopy (FLIM). An advantage of this method is that only those molecules that are involved in the energy-transfer process are monitored. This contrasts with current methods that measure either steady-state fluorescence of donor and acceptor molecules or time-resolved fluorescence of donor molecules, and thereby probe a mixture of donor molecules that are involved in FRET and those that are fluorescent but not involved in FRET. The absence of FRET can, for instance, be due to unwanted acceptor bleaching or incomplete maturing of visible proteins that should act as acceptor molecules. In addition, parameters describing the rise of acceptor fluorescence and the decay of donor fluorescence can be determined via simultaneous global analysis of multiple FLIM images, thereby increasing the reliability of the analysis. In the present study, plant protoplasts transfected with fusions of visible fluorescent proteins are used to illustrate the new data analysis method. It is demonstrated that the distances estimated with the present method are substantially smaller than those estimated from the average donor lifetimes, due to a fraction of non-transferring donor molecules. Software to reproduce the presented results is provided in an open-source and freely available package called "TIMP" for "The R project for Statistical Computing".

87 citations

Journal ArticleDOI
TL;DR: A methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET, and the combination of two independent methods gives consistent results.

67 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data which features interactive and dynamic data inspection and interactive viewing of results.
Abstract: In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the specification of models and viewing of analysis results. Instead, Glotaran provides a graphical user interface which features interactive and dynamic data inspection, easier -- assisted by the user interface -- model specification and interactive viewing of results. The interactivity component is especially helpful when working with large, multi-dimensional datasets as often result from time-resolved spectroscopy measurements, allowing the user to easily pre-select and manipulate data before analysis and to quickly zoom in to regions of interest in the analysis results. Glotaran has been developed on top of the NetBeans rich client platform and communicates with R through the Java-to-R interface Rserve. The background and the functionality of the application are described here. In addition, the design, development and implementation process of Glotaran is documented in a generic way.

994 citations

Journal ArticleDOI
31 Dec 2012
TL;DR: The use of multivariate analysis for metabolomics is discussed, as well as common pitfalls and misconceptions, and spectral features contributing most to variation or separation are identified for further analysis.
Abstract: Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions.

946 citations

Journal ArticleDOI
TL;DR: The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules.
Abstract: The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment−pigment and pigment−protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half...

714 citations

Journal ArticleDOI
07 Apr 2017-Science
TL;DR: Direct visualization of hot-carrier migration in methylammonium lead iodide (CH3NH3PbI3) thin films by ultrafast transient absorption microscopy is reported, demonstrating three distinct transport regimes.
Abstract: The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. We report direct visualization of hot-carrier migration in methylammonium lead iodide (CH3NH3PbI3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. The nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. These results suggest potential applications of hot-carrier devices based on hybrid perovskites.

408 citations