scispace - formally typeset
Search or ask a question
Author

Sergey Peredkov

Bio: Sergey Peredkov is an academic researcher from Max Planck Society. The author has contributed to research in topics: Non-covalent interactions & Density functional theory. The author has an hindex of 3, co-authored 4 publications receiving 51 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss some applications of laboratory X-ray spectroscopy with a particular focus on chemistry and catalysis, and summarise some of the notable Xray absorption and Xray emission experiments and results accomplished with in-house setups.

93 citations

Journal ArticleDOI
TL;DR: This result shows that substitutional doping of a 3d metal with even just one atom of a 4d or 5d metal can lead to dramatic changes in both spin and orbital moment, opening up the route to novel applications.
Abstract: Bi-metallic nanoalloys of mixed 3d–4d or 3d–5d elements are promising candidates for technological applications. The large magnetic moment of the 3d materials in combination with a high spin–orbit coupling of the 4d or 5d materials give rise to a material with a large magnetic moment and a strong magnetic anisotropy, making them ideally suitable in for example magnetic storage devices. Especially for clusters, which already have a higher magnetic moment compared to the bulk, these alloys can profit from the cooperative role of alloying and size reduction in order to obtain magnetically stable materials with a large magnetic moment. Here, the influence of doping of small cobalt clusters on the spin and orbital magnetic moment has been studied for the cations [Co8−14Au]+ and [Co10−14Rh]+. Compared to the undoped pure cobalt [CoN]+ clusters we find a significant increase in the spin moment for specific CoN−1Au+ clusters and a very strong increase in the orbital moment for some CoN−1Rh+ clusters, with more than doubling for Co12Rh+. This result shows that substitutional doping of a 3d metal with even just one atom of a 4d or 5d metal can lead to dramatic changes in both spin and orbital moment, opening up the route to novel applications.

12 citations

Journal ArticleDOI
TL;DR: In contrast with K- or L-edge X-ray absorption of 4d transition metals, which probe the unoccupied levels, the observed 4p-to-2p XES arises from electrons in filled-ligand- and filled-metal-based orbitals, thus providing simultaneous access to the ligand and metal contributions to bonding
Abstract: Ruthenium 4d-to-2p X-ray emission spectroscopy (XES) was systematically explored for a series of Ru2+ and Ru3+ species. Complementary density functional theory calculations were utilized to allow f...

11 citations

Journal ArticleDOI
TL;DR: P Kβ spectra offer a detailed picture of phosphate valence electronic structure, reporting on subtle non-covalent effects, such as hydrogen bonding and ionic interactions, that are key to enzymatic catalysis.
Abstract: Phosphorus is ubiquitous in biochemistry, being found in the phosphate groups of nucleic acids and the energy-transferring system of adenine nucleotides (e.g. ATP). Kβ X-ray emission spectroscopy (XES) of phosphorus has been largely unexplored, with no previous applications to biomolecules. Here, the potential of P Kβ XES to study phosphate-containing biomolecules, including ATP and NADPH, is evaluated, as is the application of the technique to aqueous solution samples. P Kβ spectra offer a detailed picture of phosphate valence electronic structure, reporting on subtle non-covalent effects, such as hydrogen bonding and ionic interactions, that are key to enzymatic catalysis. Spectral features are interpreted using density functional theory (DFT) calculations, and potential applications to the study of biological energy conversion are highlighted.

5 citations


Cited by
More filters
Journal Article
Y.X. Wang, Z.Y. Pan, Y.K Ho, Yadong Xu, Aijun Du 
TL;DR: In this article, the impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis-Sinclair potentials.
Abstract: The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.

289 citations

Journal ArticleDOI

93 citations

Journal ArticleDOI
TL;DR: The metal-free COFs do not have these properties and are therefore excluded from such applications as mentioned in this paper , while metal-ated COFs have additional intriguing properties and applications, and have attracted considerable attention over the past decade.
Abstract: Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.

45 citations