scispace - formally typeset
Search or ask a question
Author

Sergi Garcia-Segura

Bio: Sergi Garcia-Segura is an academic researcher from Arizona State University. The author has contributed to research in topics: Chemistry & Electrochemistry. The author has an hindex of 47, co-authored 123 publications receiving 6027 citations. Previous affiliations of Sergi Garcia-Segura include University of Barcelona & Chia Nan University of Pharmacy and Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general and critical review on the application of photoelectrocatalysis to the remediation of wastewaters with organic pollutants is presented, with special attention on different kinds of photocatalysts utilized and preparation methods of the most ubiquitous TiO2 materials.
Abstract: A large variety of electrochemical advanced oxidation processes (EAOPs) have been recently developed to remove organic pollutants from wastewaters to avoid their serious health-risk factors from their environmental accumulation and to reuse the treated water for human activities. The effectiveness of EAOPs is based on the in situ production of strong reactive oxygen species (ROS) like hydroxyl radical ( OH). Photoelectrocatalysis (PEC) has emerged as a promising powerful EAOP by combining photocatalytic and electrolytic processes. It consists in the promotion of electrons from the valence band to the conduction band of a semiconductor photocatalyst upon light irradiation, with production of positive holes. The fast recombination of the electron/hole pairs formed is avoided in PEC by applying an external bias potential to the photocatalyst that extracts the photogenerated electrons up to the cathode of the electrolytic cell. Organics can be oxidized directly by the holes, •OH formed from water oxidation with holes and other ROS produced between the electrons and dissolved O2. This paper presents a general and critical review on the application of PEC to the remediation of wastewaters with organic pollutants. Special attention is made over the different kinds of photocatalysts utilized and preparation methods of the most ubiquitous TiO2 materials. Typical PEC systems and main operation variables that affect the effectiveness of the degradation process are also examined. An exhaustive analysis of the advances obtained on the treatment of dyes, chemicals and pharmaceuticals from synthetic solutions, as well as of real wastewaters, is performed. Finally, research prospects are proposed for the future development of PEC with perspectives to industrial application.

530 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental principles necessary to understand electrochemical reduction technologies and how to apply them are described, and the applicability for treating drinking water matrices using electrochemical processes is analyzed, including existing implementation of commercial treatment systems.
Abstract: Nitrate contamination in surface and ground waters is one of this century’s major engineering challenges due to negative environmental impacts and the risk to human health in drinking water. Electrochemical reduction is a promising water treatment technology to manage nitrate in drinking water. This critical review describes the fundamental principles necessary to understand electrochemical reduction technologies and how to apply them. The focus is on electrochemical nitrate reduction mechanisms and pathways that form undesirable products (nitrite, ammonium) or the more desirable product (dinitrogen). Factors influencing the conversion rates and selectivity of electrochemical nitrate reduction, such as electrode material and operating parameters, are also described. Finally, the applicability for treating drinking water matrices using electrochemical processes is analyzed, including existing implementation of commercial treatment systems. Overall, this critical review contributes to the understanding of the potential applications and constraints of electrochemical reduction to manage nitrate in drinking waters and highlights directions for future research required for implementation.

520 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical advanced oxidation process electrochemical oxidation is reviewed for its performance over the treatment of actual industrial and urban effluents, and the combination of electrochemical oxide with other water treatment technologies as pre-treatment, post-treatment and integrated treatment is also examined.

482 citations

Journal ArticleDOI
TL;DR: The electrocoagulation (EC) process is an electrochemical means of introducing coagulants and removing suspended solids, colloidal material, and metals, as well as other dissolved solids from water and wastewaters as discussed by the authors.

429 citations

Journal ArticleDOI
TL;DR: Low current densities and Fe(2+) contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe(2+)-UVA method.

249 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Advanced oxidation processes (AOPs) constitute important, promising, efficient, and environmental-friendly methods developed to principally remove persistent organic pollutants (POP) from waters and wastewaters.
Abstract: Advanced oxidation processes (AOPs) constitute important, promising, efficient, and environmental-friendly methods developed to principally remove persistent organic pollutants (POPs) from waters and wastewaters. Generally, AOPs are based on the in situ generation of a powerful oxidizing agent, such as hydroxyl radicals (•OH), obtained at a sufficient concentration to effectively decontaminate waters. This critical review presents a precise and overall description of the recent literature (period 1990–2012) concerning the main types of AOPs, based on chemical, photochemical, sonochemical, and electrochemical reactions. The principles, performances, advantages, drawbacks, and applications of these AOPs to the degradation and destruction of POPs in aquatic media and to the treatment of waters and waste waters have been reported and compared.

1,550 citations

Journal ArticleDOI
TL;DR: In this article, an exhaustive review on the treatment of various synthetic and real wastewaters by five key EAOPs, i.e., anodic oxidation (AO), anodic oxidation with electrogenerated H 2 O 2, electro-Fenton (EF), photoelectro-fenton (PEF), alone and in combination with other methods like biological treatment, electrocoagulation, coagulation and membrane filtration processes.
Abstract: Over the last decades, research efforts have been made at developing more effective technologies for the remediation of waters containing persistent organic pollutants. Among the various technologies, the so-called electrochemical advanced oxidation processes (EAOPs) have caused increasing interest. These technologies are based on the electrochemical generation of strong oxidants such as hydroxyl radicals ( OH). Here, we present an exhaustive review on the treatment of various synthetic and real wastewaters by five key EAOPs, i.e., anodic oxidation (AO), anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF), alone and in combination with other methods like biological treatment, electrocoagulation, coagulation and membrane filtration processes. Fundamentals of each EAOP are also given.

1,457 citations

Journal ArticleDOI
TL;DR: A general overview of the application of EAOPs on the removal of aqueous organic pollutants is presented, first reviewing the most recent works and then looking to the future.
Abstract: In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical (•OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which •OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which •OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

1,455 citations

Journal ArticleDOI
TL;DR: Different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water, and the possible remedial measures to treat different types of effluent generated from each textile operation are recommended.

1,335 citations

Journal ArticleDOI
TL;DR: In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail and the critical assessment of the reactors that can be used to put these technologies into practice is devoted.
Abstract: Traditional physicochemical and biological techniques, as well as advanced oxidation processes (AOPs), are often inadequate, ineffective, or expensive for industrial water reclamation. Within this context, the electrochemical technologies have found a niche where they can become dominant in the near future, especially for the abatement of biorefractory substances. In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail with the following goals: (1) to present the fundamental aspects of the selected processes; (2) to discuss the effect of both the main operating parameters and the reactor design on their performance; (3) to critically evaluate their advantages and disadvantages; and (4) to forecast the prospect of their utilization on an applicable scale by identifying the key points to be further investigated. The review is focused on the direct electrochemical oxidation, the indirect electrochemical oxidation mediated by electrogenerated active chlorine, and the coupling between anodic and cathodic processes. The last part of the review is devoted to the critical assessment of the reactors that can be used to put these technologies into practice.

1,197 citations