scispace - formally typeset
Search or ask a question
Author

Sergio A. Lira

Bio: Sergio A. Lira is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Chemokine & Chemokine receptor. The author has an hindex of 81, co-authored 225 publications receiving 31332 citations. Previous affiliations of Sergio A. Lira include Roche Institute of Molecular Biology & University of Michigan.


Papers
More filters
Journal ArticleDOI
12 Aug 2010-Nature
TL;DR: It is demonstrated that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
Abstract: The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.

3,012 citations

Journal ArticleDOI
13 Feb 2003-Nature
TL;DR: It is shown that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL- 12, is the critical factor in this response.
Abstract: Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.

2,915 citations

Journal ArticleDOI
TL;DR: Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX2CR1 antagonists could increase neuronal vulnerability.
Abstract: Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1−/− mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1−/− mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.

1,359 citations

Journal ArticleDOI
TL;DR: Analyzing mouse monocyte subsets in apoE-deficient mice and tracing their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques suggests antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their C CR2-dependent responses to inflammation overall.
Abstract: Monocytes participate critically in atherosclerosis. There are 2 major subsets expressing different chemokine receptor patterns: CCR2(+)CX3CR1(+)Ly-6C(hi) and CCR2(-)CX3CR1(++)Ly-6C(lo) monocytes. Both C-C motif chemokine receptor 2 (CCR2) and C-X(3)-C motif chemokine receptor 1 (CX3CR1) are linked to progression of atherosclerotic plaques. Here, we analyzed mouse monocyte subsets in apoE-deficient mice and traced their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques. Blood monocyte counts were elevated in apoE(-/-) mice and skewed toward an increased frequency of CCR2(+)Ly-6C(hi) monocytes in apoE(-/-) mice fed a high-fat diet. CCR2(+)Ly-6C(hi) monocytes efficiently accumulated in plaques, whereas CCR2(-)Ly-6C(lo) monocytes entered less frequently but were more prone to developing into plaque cells expressing the dendritic cell-associated marker CD11c, indicating that phagocyte heterogeneity in plaques is linked to distinct types of entering monocytes. CCR2(-) monocytes did not rely on CX3CR1 to enter plaques. Instead, they were partially dependent upon CCR5, which they selectively upregulated in apoE(-/-) mice. By comparison, CCR2(+)Ly-6C(hi) monocytes unexpectedly required CX3CR1 in addition to CCR2 and CCR5 to accumulate within plaques. In many other inflammatory settings, these monocytes utilize CCR2, but not CX3CR1, for trafficking. Thus, antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their CCR2-dependent responses to inflammation overall.

1,229 citations

Journal ArticleDOI
04 Jul 1996-Nature
TL;DR: Mice defective in GDNF expression are generated by using homologous recombination in embryonic stem cells to delete each of its two coding exons, and ablation of the GDNF gene does not affect the differentiation and survival of dopamine neurons, at least during embryonic development.
Abstract: Glial-cell-line-derived neurotrophic factor (GDNF) is a potent survival factor for dopaminergic neurons and motor neurons in culture. It also protects these neurons from degeneration in vitro, and improves symptoms like Parkinson's disease induced pharmacologically in rodents and monkeys. Thus GDNF might have beneficial effects in the treatment of Parkinson's disease and amyotrophic lateral sclerosis. To examine the physiological role of GDNF in the development of the mammalian nervous system, we have generated mice defective in GDNF expression by using homologous recombination in embryonic stem cells to delete each of its two coding exons. GDNF-null mice, regardless of their targeted mutation, display complete renal agencies owing to lack of induction of the ureteric bud, an early step in kidney development. These mice also have no enteric neurons, which probably explains the observed pyloric stenosis and dilation of their duodenum. However, ablation of the GDNF gene does not affect the differentiation and survival of dopaminergic neurons, at least during embryonic development.

1,212 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations

Journal ArticleDOI
TL;DR: The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases.
Abstract: ▪ Abstract The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-κB is through interactions with an inhibitor protein called IκB. Recent evidence confirms the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-κB to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of IκB. Exciting new research has elaborated several important and unexpected findings that...

5,833 citations