scispace - formally typeset
Search or ask a question
Author

Sergio Cubero

Bio: Sergio Cubero is an academic researcher from University of La Rioja. The author has contributed to research in topics: Hyperspectral imaging & Machine vision. The author has an hindex of 25, co-authored 60 publications receiving 2234 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products are explained, with details of the statistical techniques most commonly used for this task.
Abstract: Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.

444 citations

Journal ArticleDOI
TL;DR: This work presents the latest developments in the application of Hyperspectral technology to the inspection of the internal and external quality of fruits and vegetables.
Abstract: Artificial vision systems are powerful tools for the automatic inspection of fruits and vegetables. Typical target applications of such systems include grading, quality estimation from external parameters or internal features, monitoring of fruit processes during storage or evaluation of experimental treatments. The capabilities of an artificial vision system go beyond the limited human capacity to evaluate long-term processes objectively or to appreciate events that take place outside the visible electromagnetic spectrum. Use of the ultraviolet or near-infrared spectra makes it possible to explore defects or features that the human eye is unable to see. Hyperspectral systems provide information about individual components or damage that can be perceived only at particular wavelengths and can be used as a tool to develop new computer vision systems adapted to particular objectives. In-line grading systems allow huge amounts of fruit or vegetables to be inspected individually and provide statistics about the batch. In general, artificial systems not only substitute human inspection but also improve on its capabilities. This work presents the latest developments in the application of this technology to the inspection of the internal and external quality of fruits and vegetables.

317 citations

Journal ArticleDOI
TL;DR: In this article, a computer vision-based machine was developed to inspect the raw material coming from the pomegranate extraction process and classify it in four categories: internal membranes, internal membranes and defective arils, which are removed together with good arils and must be removed on the packing line.

144 citations

Journal ArticleDOI
TL;DR: Cortes Lopez et al. as mentioned in this paper used the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202), partially funded by INIA and FEDER funds.
Abstract: This work was partially funded by INIA and FEDER funds through research project RTA2015-00078-00-00.Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202).

130 citations

Journal ArticleDOI
TL;DR: This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images.
Abstract: Early automatic detection of fungal infections in post-harvest citrus fruits is especially important for the citrus industry because only a few infected fruits can spread the infection to a whole batch during operations such as storage or exportation, thus causing great economic losses. Nowadays, this detection is carried out manually by trained workers illuminating the fruit with dangerous ultraviolet lighting. The use of hyperspectral imaging systems makes it possible to advance in the development of systems capable of carrying out this detection process automatically. However, these systems present the disadvantage of generating a huge amount of data, which must be selected in order to achieve a result that is useful to the sector. This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images. The classifier used is a multilayer perceptron, trained with a new learning algorithm called extreme learning machine. The results are obtained using images of mandarins with the pixels labelled in five different classes: two kinds of sound skin, two kinds of decay and scars. This method yields a reduced set of features and a classification success rate of around 89%.

121 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: This review discusses the techniques and procedures for the measurement and analysis of colour in food and other biomaterial materials, focusing on the instrumental and visual measurements for quantifying colour attributes and highlights the range of primary and derived objective colour indices used to characterise the maturity and quality of a wide range of food products and beverages.
Abstract: Colour is an important quality attribute in the food and bioprocess industries, and it influences consumer’s choice and preferences. Food colour is governed by the chemical, biochemical, microbial and physical changes which occur during growth, maturation, postharvest handling and processing. Colour measurement of food products has been used as an indirect measure of other quality attributes such as flavour and contents of pigments because it is simpler, faster and correlates well with other physicochemical properties. This review discusses the techniques and procedures for the measurement and analysis of colour in food and other biomaterial materials. It focuses on the instrumental (objective) and visual (subjective) measurements for quantifying colour attributes and highlights the range of primary and derived objective colour indices used to characterise the maturity and quality of a wide range of food products and beverages. Different approaches applied to model food colour are described, including reaction mechanisms, response surface methodology and others based on probabilistic and non-isothermal kinetics. Colour is one of the most widely measured product quality attributes in postharvest handling and in the food processing research and industry. Apart from differences in instrumentation, colour measurements are often reported based on different colour indices even for the same product, making it difficult to compare results in the literature. There is a need for standardisation to improve the traceability and transferability of measurements. The correlation between colour and other sensory quality attributes is well established, but future prospects exist in the application of objective non-destructive colour measurement in predictive modelling of the nutritional quality of fresh and processed food products.

1,232 citations

01 Jan 1981
TL;DR: In this article, Monte Carlo techniques are used to estimate the probability of a given set of variables for a particular set of classes of data, such as conditional probability and hypergeometric probability.
Abstract: 1. Introduction 1.1 An Overview 1.2 Some Examples 1.3 A Brief History 1.4 A Chapter Summary 2. Probability 2.1 Introduction 2.2 Sample Spaces and the Algebra of Sets 2.3 The Probability Function 2.4 Conditional Probability 2.5 Independence 2.6 Combinatorics 2.7 Combinatorial Probability 2.8 Taking a Second Look at Statistics (Monte Carlo Techniques) 3. Random Variables 3.1 Introduction 3.2 Binomial and Hypergeometric Probabilities 3.3 Discrete Random Variables 3.4 Continuous Random Variables 3.5 Expected Values 3.6 The Variance 3.7 Joint Densities 3.8 Transforming and Combining Random Variables 3.9 Further Properties of the Mean and Variance 3.10 Order Statistics 3.11 Conditional Densities 3.12 Moment-Generating Functions 3.13 Taking a Second Look at Statistics (Interpreting Means) Appendix 3.A.1 MINITAB Applications 4. Special Distributions 4.1 Introduction 4.2 The Poisson Distribution 4.3 The Normal Distribution 4.4 The Geometric Distribution 4.5 The Negative Binomial Distribution 4.6 The Gamma Distribution 4.7 Taking a Second Look at Statistics (Monte Carlo Simulations) Appendix 4.A.1 MINITAB Applications Appendix 4.A.2 A Proof of the Central Limit Theorem 5. Estimation 5.1 Introduction 5.2 Estimating Parameters: The Method of Maximum Likelihood and the Method of Moments 5.3 Interval Estimation 5.4 Properties of Estimators 5.5 Minimum-Variance Estimators: The Crami?½r-Rao Lower Bound 5.6 Sufficient Estimators 5.7 Consistency 5.8 Bayesian Estimation 5.9 Taking A Second Look at Statistics (Beyond Classical Estimation) Appendix 5.A.1 MINITAB Applications 6. Hypothesis Testing 6.1 Introduction 6.2 The Decision Rule 6.3 Testing Binomial Dataâ H0: p = po 6.4 Type I and Type II Errors 6.5 A Notion of Optimality: The Generalized Likelihood Ratio 6.6 Taking a Second Look at Statistics (Statistical Significance versus â Practicalâ Significance) 7. Inferences Based on the Normal Distribution 7.1 Introduction 7.2 Comparing Y-i?½ s/ vn and Y-i?½ S/ vn 7.3 Deriving the Distribution of Y-i?½ S/ vn 7.4 Drawing Inferences About i?½ 7.5 Drawing Inferences About s2 7.6 Taking a Second Look at Statistics (Type II Error) Appendix 7.A.1 MINITAB Applications Appendix 7.A.2 Some Distribution Results for Y and S2 Appendix 7.A.3 A Proof that the One-Sample t Test is a GLRT Appendix 7.A.4 A Proof of Theorem 7.5.2 8. Types of Data: A Brief Overview 8.1 Introduction 8.2 Classifying Data 8.3 Taking a Second Look at Statistics (Samples Are Not â Validâ !) 9. Two-Sample Inferences 9.1 Introduction 9.2 Testing H0: i?½X =i?½Y 9.3 Testing H0: s2X=s2Yâ The F Test 9.4 Binomial Data: Testing H0: pX = pY 9.5 Confidence Intervals for the Two-Sample Problem 9.6 Taking a Second Look at Statistics (Choosing Samples) Appendix 9.A.1 A Derivation of the Two-Sample t Test (A Proof of Theorem 9.2.2) Appendix 9.A.2 MINITAB Applications 10. Goodness-of-Fit Tests 10.1 Introduction 10.2 The Multinomial Distribution 10.3 Goodness-of-Fit Tests: All Parameters Known 10.4 Goodness-of-Fit Tests: Parameters Unknown 10.5 Contingency Tables 10.6 Taking a Second Look at Statistics (Outliers) Appendix 10.A.1 MINITAB Applications 11. Regression 11.1 Introduction 11.2 The Method of Least Squares 11.3 The Linear Model 11.4 Covariance and Correlation 11.5 The Bivariate Normal Distribution 11.6 Taking a Second Look at Statistics (How Not to Interpret the Sample Correlation Coefficient) Appendix 11.A.1 MINITAB Applications Appendix 11.A.2 A Proof of Theorem 11.3.3 12. The Analysis of Variance 12.1 Introduction 12.2 The F Test 12.3 Multiple Comparisons: Tukeyâ s Method 12.4 Testing Subhypotheses with Contrasts 12.5 Data Transformations 12.6 Taking a Second Look at Statistics (Putting the Subject of Statistics togetherâ the Contributions of Ronald A. Fisher) Appendix 12.A.1 MINITAB Applications Appendix 12.A.2 A Proof of Theorem 12.2.2 Appendix 12.A.3 The Distribution of SSTR/(kâ 1) SSE/(nâ k)When H1 is True 13. Randomized Block Designs 13.1 Introduction 13.2 The F Test for a Randomized Block Design 13.3 The Paired t Test 13.4 Taking a Second Look at Statistics (Choosing between a Two-Sample t Test and a Paired t Test) Appendix 13.A.1 MINITAB Applications 14. Nonparametric Statistics 14.1 Introduction 14.2 The Sign Test 14.3 Wilcoxon Tests 14.4 The Kruskal-Wallis Test 14.5 The Friedman Test 14.6 Testing for Randomness 14.7 Taking a Second Look at Statistics (Comparing Parametric and Nonparametric Procedures) Appendix 14.A.1 MINITAB Applications Appendix: Statistical Tables Answers to Selected Odd-Numbered Questions Bibliography Index

524 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the fundamentals and applications of computer vision for food colour measurement, and the advantages and disadvantages of using computer vision techniques for colour measurement are analyzed and its future trends are proposed.
Abstract: Colour is the first quality attribute of food evaluated by consumers, and is therefore an important component of food quality relevant to market acceptance. Rapid and objective measurement of food colour is required in quality control for the commercial grading of products. Computer vision is a promising technique currently investigated for food colour measurement, especially with the ability of providing a detailed characterization of colour uniformity at pixel-based level. This paper reviews the fundamentals and applications of computer vision for food colour measurement. Introduction of colour space and traditional colour measurements is also given. At last, advantages and disadvantages of computer vision for colour measurement are analyzed and its future trends are proposed.

477 citations

Journal ArticleDOI
TL;DR: It is evident that hyperspectral imaging can automate a variety of routine inspection tasks and is anticipated that real-time food monitoring systems with this technique can be expected to meet the requirements of the modern industrial control and sorting systems in the near future.
Abstract: In recent years, hyperspectral imaging has gained a wide recognition as a non-destructive and fast quality and safety analysis and assessment method for a wide range of food products. As the second part of this review, applications in quality and safety determination for food products are presented to illustrate the capability of this technique in the food industry for classification and grading, defect and disease detection, distribution visualization of chemical attributes, and evaluations of overall quality of meat, fish, fruits, vegetables, and other food products. The state of the art of hyperspectral imaging for each of the categories was summarized in the aspects of the investigated quality and safety attributes, the used systems (wavelength range, acquisition mode), the data analysis methods (feature extraction, multivariate calibration, variables selection), and the performance (correlation, error, visualization). With its success in different applications of food quality and safety analysis and assessment, it is evident that hyperspectral imaging can automate a variety of routine inspection tasks. Industrial relevance It is anticipated that real-time food monitoring systems with this technique can be expected to meet the requirements of the modern industrial control and sorting systems in the near future.

461 citations