scispace - formally typeset
Search or ask a question
Author

Sergio Grinstein

Bio: Sergio Grinstein is an academic researcher from University of Toronto. The author has contributed to research in topics: Phagosome & Phagocytosis. The author has an hindex of 118, co-authored 533 publications receiving 51452 citations. Previous affiliations of Sergio Grinstein include Hospital for Sick Children & McGill University.


Papers
More filters
Journal ArticleDOI
TL;DR: This approach shows that the GTPase dynamin differentially affects the kinetics of long- and short-lived endocytic structures and that the motion of CD36 receptors along cytoskeleton-mediated linear tracks increases their aggregation probability.
Abstract: Single-particle tracking (SPT) is often the rate-limiting step in live-cell imaging studies of subcellular dynamics. Here we present a tracking algorithm that addresses the principal challenges of SPT, namely high particle density, particle motion heterogeneity, temporary particle disappearance, and particle merging and splitting. The algorithm first links particles between consecutive frames and then links the resulting track segments into complete trajectories. Both steps are formulated as global combinatorial optimization problems whose solution identifies the overall most likely set of particle trajectories throughout a movie. Using this approach, we show that the GTPase dynamin differentially affects the kinetics of long- and short-lived endocytic structures and that the motion of CD36 receptors along cytoskeleton-mediated linear tracks increases their aggregation probability. Both applications indicate the requirement for robust and complete tracking of dense particle fields to dissect the mechanisms of receptor organization at the level of the plasma membrane.

1,753 citations

Journal ArticleDOI
TL;DR: A dynamic, finely tuned balance between proton-extruding andProton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Abstract: Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.

1,746 citations

Journal ArticleDOI
11 Jan 2008-Science
TL;DR: A biosensor developed to study the subcellular distribution of phosphatidylserine found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes.
Abstract: Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes. The negative charge associated with the presence of phosphatidylserine directed proteins with moderately positive charge to the endocytic pathway. More strongly cationic proteins, normally associated with the plasma membrane, relocalized to endocytic compartments when the plasma membrane surface charge decreased on calcium influx.

945 citations

Journal ArticleDOI
TL;DR: An overview of the antimicrobial defences of the host cell is presented, with emphasis on macrophages, for which phagocytosis has been studied most extensively and some of the evasive strategies used by bacteria are described.
Abstract: Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.

849 citations

Journal ArticleDOI
TL;DR: Current knowledge of the cellular and molecular basis of phagosome formation and maturation is summarized and the manner in which phagocytosis is subverted by certain pathogens is discussed.
Abstract: Engulfment and destruction of invading microorganisms by phagocytosis are critical components of the innate immune response. In addition, phagocytosis is also required for the clearance of apoptotic bodies, an essential aspect of tissue homeostasis and remodeling. Here, we summarize the current knowledge of the cellular and molecular basis of phagosome formation and maturation. We discuss the manner in which phagocytosis is subverted by certain pathogens and consider congenital disorders that affect phagocyte function.

824 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Abstract: The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.

7,888 citations

Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.

6,987 citations