scispace - formally typeset
Search or ask a question
Author

Sergio Grunder

Bio: Sergio Grunder is an academic researcher from Northwestern University. The author has contributed to research in topics: Molecular electronics & Molecular switch. The author has an hindex of 17, co-authored 22 publications receiving 2776 citations. Previous affiliations of Sergio Grunder include University of Basel & Durham University.

Papers
More filters
Journal ArticleDOI
25 May 2012-Science
TL;DR: A strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms) is reported, as evidenced by their permanent porosity and high thermal stability (up to 300°C).
Abstract: We report a strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms). Specifically, the systematic expansion of a well-known MOF structure, MOF-74, from its original link of one phenylene ring (I) to two, three, four, five, six, seven, nine, and eleven (II to XI, respectively), afforded an isoreticular series of MOF-74 structures (termed IRMOF-74-I to XI) with pore apertures ranging from 14 to 98 angstroms. All members of this series have noninterpenetrating structures and exhibit robust architectures, as evidenced by their permanent porosity and high thermal stability (up to 300°C). The pore apertures of an oligoethylene glycol–functionalized IRMOF-74-VII and IRMOF-74-IX are large enough for natural proteins to enter the pores.

1,637 citations

Journal ArticleDOI
TL;DR: The use of oligo-phenylene ethynylene molecules is reported as a model system, and it is established that molecular junctions can still form when one of the chemical linker groups is displaced or even fully removed, and aromatic pi-pi coupling between adjacent molecules is efficient enough to allow for the controlled formation of molecular bridges between nearby electrodes.
Abstract: If individual molecules are to be used as building blocks for electronic devices, it will be essential to understand charge transport at the level of single molecules. Most existing experiments rely on the synthesis of functional rod-like molecules with chemical linker groups at both ends to provide strong, covalent anchoring to the source and drain contacts. This approach has proved very successful, providing quantitative measures of single-molecule conductance, and demonstrating rectification and switching at the single-molecule level. However, the influence of intermolecular interactions on the formation and operation of molecular junctions has been overlooked. Here we report the use of oligo-phenylene ethynylene molecules as a model system, and establish that molecular junctions can still form when one of the chemical linker groups is displaced or even fully removed. Our results demonstrate that aromatic pi-pi coupling between adjacent molecules is efficient enough to allow for the controlled formation of molecular bridges between nearby electrodes.

339 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis and structure of an azobenzene functionalized isoreticular metal-organic framework (azo-IRMOF-74-III) [Mg2(C26H16O6N2)] are described and the ability to controllably release a guest from its pores in response to an external stimulus has been demonstrated.
Abstract: The synthesis and structure of an azobenzene functionalized isoreticular metal–organic framework (azo-IRMOF-74-III) [Mg2(C26H16O6N2)] are described and the ability to controllably release a guest from its pores in response to an external stimulus has been demonstrated. Azo-IRMOF-74-III is an isoreticular expansion of MOF-74 with an etb topology and a 1-D hexagonal pore structure. The structure of azo-IRMOF-74-III is analogous to that of MOF-74, as demonstrated by powder X-ray diffraction, with a surface area of 2410 m2 g−1 BET. Each organic unit within azo-IRMOF-74-III is decorated with a photoswitchable azobenzene unit, which can be toggled between its cis and trans conformation by excitation at 408 nm. When propidium iodide dye was loaded into the MOF, spectroscopic studies showed that no release of the luminescent dye was observed under ambient conditions. Upon irradiation of the MOF at 408 nm, however, the rapid wagging motion inherent to the repetitive isomerization of the azobenzene functionality triggered the release of the dye from the pores. This light-induced release of cargo can be modulated between an on and an off state by controlling the conformation of the azobenzene with the appropriate wavelength of light. This report highlights the ability to capture and release small molecules and demonstrates the utility of self-contained photo-active switches located inside highly porous MOFs.

224 citations

Journal ArticleDOI
TL;DR: It is found that solubilizing side groups do neither prevent the molecules from being anchored within a break junction nor noticeably influence the conductance value.
Abstract: We determine and compare, at the single molecule level and under identical environmental conditions, the electrical conductance of four conjugated phenylene oligomers comprising terminal sulfur anchor groups with simple structural and conjugation variations. The comparison shows that the conductance of oligo(phenylene vinylene) (OPV) is slightly higher than that of oligo(phenylene ethynylene) (OPE). We find that solubilizing side groups do neither prevent the molecules from being anchored within a break junction nor noticeably influence the conductance value.

185 citations

Journal ArticleDOI
TL;DR: In this paper, the core of a rod-like molecule between two metallic single-walled carbon nanotube electrodes forming a rigid solid-state device was observed to emit electroluminescence.
Abstract: The positioning of single molecules between nanoscale electrodes1,2,3,4,5,6,7,8 has allowed their use as functional units in electronic devices. Although the electrical transport in such devices has been widely explored, optical measurements have been restricted to the observation of electroluminescence from nanocrystals and nanoclusters9,10 and from molecules in a scanning tunnelling microscope setup11,12. In this Letter, we report the observation of electroluminescence from the core of a rod-like molecule between two metallic single-walled carbon nanotube electrodes forming a rigid solid-state device. We also develop a simple model to explain the onset voltage for electroluminescence. These results suggest new characterization and functional possibilities, and demonstrate the potential of carbon nanotubes for use in molecular electronics. Voltage-induced light emission has been observed from a molecule attached to two carbon-nanotube electrodes.

133 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations