scispace - formally typeset
S

Sergio Guadarrama

Researcher at Google

Publications -  71
Citations -  39193

Sergio Guadarrama is an academic researcher from Google. The author has contributed to research in topics: Fuzzy logic & Fuzzy set operations. The author has an hindex of 34, co-authored 68 publications receiving 35677 citations. Previous affiliations of Sergio Guadarrama include Technical University of Madrid & University of California, Berkeley.

Papers
More filters
Posted Content

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings ArticleDOI

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings ArticleDOI

Long-term recurrent convolutional networks for visual recognition and description

TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Posted Content

Long-term Recurrent Convolutional Networks for Visual Recognition and Description

TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Proceedings ArticleDOI

Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors

TL;DR: A unified implementation of the Faster R-CNN, R-FCN and SSD systems is presented and the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures is traced out.