scispace - formally typeset
Search or ask a question
Author

Sergio Guadarrama

Bio: Sergio Guadarrama is an academic researcher from Google. The author has contributed to research in topics: Fuzzy logic & Fuzzy set operations. The author has an hindex of 34, co-authored 68 publications receiving 35677 citations. Previous affiliations of Sergio Guadarrama include Technical University of Madrid & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: A definition of a Fuzzy Prolog Language that models B([0,1])-valued FuzzY Logic, and the implementation of an interpreter for this conceived language using constraint logic programming over real numbers is presented.

111 citations

Proceedings ArticleDOI
19 May 2017
TL;DR: This work proposes a novel approach to automatically produce multiple colorized versions of a grayscale image, and demonstrates that this approach produces more diverse and plausible colorizations than existing methods, as judged by human raters in a "Visual Turing Test".
Abstract: We propose a novel approach to automatically produce multiple colorized versions of a grayscale image. Our method results from the observation that the task of automated colorization is relatively easy given a low-resolution version of the color image. We first train a conditional PixelCNN to generate a low resolution color for a given grayscale image. Then, given the generated low-resolution color image and the original grayscale image as inputs, we train a second CNN to generate a high-resolution colorization of an image. We demonstrate that our approach produces more diverse and plausible colorizations than existing methods, as judged by human raters in a "Visual Turing Test".

98 citations

Proceedings ArticleDOI
12 Jul 2014
TL;DR: This paper introduces a novel object retrieval method that can combine categoryand instance-level semantics in a common representation and shows that the approach can accurately retrieve objects based on extremely varied open-vocabulary queries.
Abstract: In this paper, we address the problem of retrieving objects based on open-vocabulary natural language queries: Given a phrase describing a specific object, e.g., “the corn flakes box”, the task is to find the best match in a set of images containing candidate objects. When naming objects, humans tend to use natural language with rich semantics, including basic-level categories, fine-grained categories, and instance-level concepts such as brand names. Existing approaches to large-scale object recognition fail in this scenario, as they expect queries that map directly to a fixed set of pre-trained visual categories, e.g. ImageNet synset tags. We address this limitation by introducing a novel object retrieval method. Given a candidate object image, we first map it to a set of words that are likely to describe it, using several learned image-to-text projections. We also propose a method for handling open-vocabularies, i.e., words not contained in the training data. We then compare the natural language query to the sets of words predicted for each candidate and select the best match. Our method can combine categoryand instance-level semantics in a common representation. We present extensive experimental results on several datasets using both instance-level and category-level matching and show that our approach can accurately retrieve objects based on extremely varied open-vocabulary queries. The source code of our approach will be publicly available together with pre-trained models at http://openvoc.berkeleyvision.org and could be directly used for robotics applications.

86 citations

Posted Content
01 Dec 2016
TL;DR: A novel training procedure for image captioning models based on policy gradient methods is proposed, which allows us to directly optimize for the metrics of interest, rather than just maximizing likelihood of human generated captions.
Abstract: In this paper, we propose a novel training procedure for image captioning models based on policy gradient methods. This allows us to directly optimize for the metrics of interest, rather than just maximizing likelihood of human generated captions. We show that by optimizing for standard metrics such as BLEU, CIDEr, METEOR and ROUGE, we can develop a system that improve on the metrics and ranks first on the MSCOCO image captioning leader board, even though our CNN-RNN model is much simpler than state of the art models. We further show that by also optimizing for the recently introduced SPICE metric, which measures semantic quality of captions, we can produce a system that significantly outperforms other methods as measured by human evaluation. Finally, we show how we can leverage extra sources of information, such as pre-trained image tagging models, to further improve quality.

85 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: This paper proposes a technique to adapt convolutional neural network (CNN) based object detectors trained on RGB images to effectively leverage depth images at test time to boost detection performance.
Abstract: In this paper we propose a technique to adapt convolutional neural network (CNN) based object detectors trained on RGB images to effectively leverage depth images at test time to boost detection performance. Given labeled depth images for a handful of categories we adapt an RGB object detector for a new category such that it can now use depth images in addition to RGB images at test time to produce more accurate detections. Our approach is built upon the observation that lower layers of a CNN are largely task and category agnostic and domain specific while higher layers are largely task and category specific while being domain agnostic. We operationalize this observation by proposing a mid-level fusion of RGB and depth CNNs. Experimental evaluation on the challenging NYUD2 dataset shows that our proposed adaptation technique results in an average 21% relative improvement in detection performance over an RGB-only baseline even when no depth training data is available for the particular category evaluated. We believe our proposed technique will extend advances made in computer vision to RGB-D data leading to improvements in performance at little additional annotation effort.

84 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations