scispace - formally typeset
Search or ask a question
Author

Sergio Marti

Other affiliations: Hewlett-Packard
Bio: Sergio Marti is an academic researcher from Stanford University. The author has contributed to research in topics: Reputation & Routing protocol. The author has an hindex of 9, co-authored 15 publications receiving 4876 citations. Previous affiliations of Sergio Marti include Hewlett-Packard.

Papers
More filters
Proceedings ArticleDOI
01 Aug 2000
TL;DR: Two techniques that improve throughput in an ad hoc network in the presence of nodes that agree to forward packets but fail to do so are described, using a watchdog that identifies misbehaving nodes and a pathrater that helps routing protocols avoid these nodes.
Abstract: This paper describes two techniques that improve throughput in an ad hoc network in the presence of nodes that agree to forward packets but fail to do so. To mitigate this problem, we propose categorizing nodes based upon their dynamically measured behavior. We use a watchdog that identifies misbehaving nodes and a pathrater that helps routing protocols avoid these nodes. Through simulation we evaluate watchdog and pathrater using packet throughput, percentage of overhead (routing) transmissions, and the accuracy of misbehaving node detection. When used together in a network with moderate mobility, the two techniques increase throughput by 17% in the presence of 40% misbehaving nodes, while increasing the percentage of overhead transmissions from the standard routing protocol's 9% to 17%. During extreme mobility, watchdog and pathrater can increase network throughput by 27%, while increasing the overhead transmissions from the standard routing protocol's 12% to 24%.

3,747 citations

Journal ArticleDOI
TL;DR: This work presents a taxonomy of reputation system components, their properties, and describes research that exemplifies compromises made to deliver a useable, implementable system.

475 citations

Proceedings ArticleDOI
17 May 2004
TL;DR: It is shown that limited reputation sharing can reduce the number of failed transactions by a factor of 20 and the efficiency and load distribution of a peer-to-peer system is evaluated.
Abstract: The increasing popularity of resource exchange through peer-to-peer networks has encouraged the development of ways to support more complex commercial transactions over these networks. Unfortunately, the prospect of higher volume and higher value transactions attracts agents seeking to exploit or weaken the network by propagating bad information and services. This paper presents advantages and disadvantages of resource selection techniques based on peer reputation. We evaluate the effect of limited reputation information sharing on the efficiency and load distribution of a peer-to-peer system. We show that limited reputation sharing can reduce the number of failed transactions by a factor of 20.

235 citations

Book ChapterDOI
14 Mar 2004
TL;DR: A trust model that lets us compare routing algorithms for P2P networks overlaying social networks, and proposes SPROUT, a DHT routing algorithm that, by using social links, significantly increases the number of query results and reduces query delays.
Abstract: In this paper, we investigate how existing social networks can benefit P2P data networks by leveraging the inherent trust associated with social links We present a trust model that lets us compare routing algorithms for P2P networks overlaying social networks.We propose SPROUT, a DHT routing algorithm that, by using social links, significantly increases the number of query results and reduces query delays.We discuss further optimization and design choices for both the model and the routing algorithm Finally, we evaluate our model versus regular DHT routing and Gnutella-like flooding.

137 citations

Book ChapterDOI
26 Feb 2004
TL;DR: This paper investigates how existing social networks can benefit P2P networks by leveraging the inherent trust associated with social links, and proposes SPROUT, a DHT routing algorithm that significantly increases the probability of successful routing by using social links.
Abstract: The equality and anonymity of peer-to-peer networks makes them vulnerable to routing denial of service attacks from misbehaving nodes. In this paper, we investigate how existing social networks can benefit P2P networks by leveraging the inherent trust associated with social links. We present a trust model that lets us compare routing algorithms for P2P networks overlaying social networks. We propose SPROUT, a DHT routing algorithm that significantly increases the probability of successful routing by using social links. Finally, we discuss further optimization and design choices for both the model and the routing algorithm.

119 citations


Cited by
More filters
Journal ArticleDOI
11 May 2003
TL;DR: This work proposes security goals for routing in sensor networks, shows how attacks against ad-hoc and peer-to-peer networks can be adapted into powerful attacks against sensors, and introduces two classes of novel attacks against sensor networks sinkholes and HELLO floods.
Abstract: We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as a goal. We propose security goals for routing in sensor networks, show how attacks against ad-hoc and peer-to-peer networks can be adapted into powerful attacks against sensor networks, introduce two classes of novel attacks against sensor networks sinkholes and HELLO floods, and analyze the security of all the major sensor network routing protocols. We describe crippling attacks against all of them and suggest countermeasures and design considerations. This is the first such analysis of secure routing in sensor networks.

2,946 citations

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A suite of security building blocks optimized for resource-constrained environments and wireless communication, and shows that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of the network.
Abstract: As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, much research has focused on making sensor networks feasible and useful, and has not concentrated on security.We present a suite of security building blocks optimized for resource-constrained environments and wireless communication. SPINS has two secure building blocks: SNEP and mTESLA SNEP provides the following important baseline security primitives: Data confidentiality, two-party data authentication, and data freshness. A particularly hard problem is to provide efficient broadcast authentication, which is an important mechanism for sensor networks. mTESLA is a new protocol which provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

2,703 citations

Journal ArticleDOI
TL;DR: A suite of security protocols optimized for sensor networks: SPINS, which includes SNEP and μTESLA and shows that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of the network.
Abstract: Wireless sensor networks will be widely deployed in the near future. While much research has focused on making these networks feasible and useful, security has received little attention. We present a suite of security protocols optimized for sensor networks: SPINS. SPINS has two secure building blocks: SNEP and μTESLA. SNEP includes: data confidentiality, two-party data authentication, and evidence of data freshness. μTESLA provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

2,298 citations

Proceedings ArticleDOI
23 Sep 2002
TL;DR: a secure on-demand routing protocol for ad hoc networks that can be used to connect ad-hoc networks to each other without disrupting existing networks.
Abstract: An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we present attacks against routing in ad hoc networks, and we present the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne. Ariadne prevents attackers or compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes, and also prevents a large number of types of Denial-of-Service attacks. In addition, Ariadne is efficient, using only highly efficient symmetric cryptographic primitives.

1,829 citations

Journal ArticleDOI
TL;DR: To identify denial-of-service vulnerabilities, the authors analyzed two effective sensor network protocols that did not initially consider security and demonstrate that consideration of security at design time is the best way to ensure successful network deployment.
Abstract: Sensor networks hold the promise of facilitating large-scale, real-time data processing in complex environments, helping to protect and monitor military, environmental, safety-critical, or domestic infrastructures and resources, Denial-of-service attacks against such networks, however, may permit real world damage to public health and safety Without proper security mechanisms, networks will be confined to limited, controlled environments, negating much of the promise they hold The limited ability of individual sensor nodes to thwart failure or attack makes ensuring network availability more difficult To identify denial-of-service vulnerabilities, the authors analyzed two effective sensor network protocols that did not initially consider security These examples demonstrate that consideration of security at design time is the best way to ensure successful network deployment

1,786 citations