scispace - formally typeset
Search or ask a question
Author

Sergio Rojas-Buzo

Bio: Sergio Rojas-Buzo is an academic researcher from Polytechnic University of Valencia. The author has contributed to research in topics: Catalysis & Metal-organic framework. The author has an hindex of 7, co-authored 13 publications receiving 243 citations.

Papers
More filters
Journal ArticleDOI
22 Jun 2020
TL;DR: In this paper, the authors used the Microscopy Service of the UPV for the TEM and STEM measurements in the CLAESS beamline of the ALBA synchrotron.
Abstract: This work was supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). L.L. thanks the ITQ for providing a contract. The authors also thank the Microscopy Service of the UPV for the TEM and STEM measurements. The XAS measurements were carried out in the CLAESS beamline of the ALBA synchrotron. We thank Giovanni Agostini for his kind support in the analysis of XAS data. HR-HAADF-STEM measurements were performed at DME-UCA at Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). C.W.L. thanks CAPES (Science without Frontiers -Process no. 13191/13-6) for a predoctoral fellowship. The financial support from ExxonMobil for this project is also greatly acknowledged.

109 citations

Journal ArticleDOI
TL;DR: A series of highly crystalline, porous, hafnium-based metal-organic frameworks (Hf-MOFs) have been shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone by using isopropanol as a hydrogen donor.
Abstract: A series of highly crystalline, porous, hafnium-based metal-organic frameworks (Hf-MOFs) have been shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone by using isopropanol as a hydrogen donor. The results are compared with their zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies using isotopically labeled isopropanol provide evidence that the transfer hydrogenation occurs through a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. The generality of the procedure has been demonstrated by accomplishing the transformation with aldehydes, ketones, and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Bronsted-acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 75 %.

106 citations

Journal ArticleDOI
TL;DR: In this paper, a metal-organic framework (MOF) was used as a heterogeneous catalysts for the highly selective and efficient cross-aldol condensation of biomass-derived carbonyls with acetone under mild reaction conditions with near quantitative yields.

57 citations

Journal ArticleDOI
TL;DR: In this article, a catalytic method is presented for the synthesis of aromatic carbamates from aromatic amines using dimethyl carbonate instead of phosgene as a green and safe reaction process.

47 citations

Journal ArticleDOI
TL;DR: Zirconium-based metal-organic framework Zr-MOF-808-P has been found to be an efficient and versatile catalyst for amide esterification and can promote the reaction for a wide range of primary, secondary and tertiary amides with n-butanol as nucleophilic agent.
Abstract: In this work, zirconium-based metal-organic framework Zr-MOF-808-P has been found to be an efficient and versatile catalyst for amide esterification. Comparing with previously reported homogeneous and heterogeneous catalysts, Zr-MOF-808-P can promote the reaction for a wide range of primary, secondary and tertiary amides with n-butanol as nucleophilic agent. Different alcohols have been employed in amide esterification with quantitative yields. Moreover, the catalyst acts as a heterogeneous catalyst and could be reused for at least five consecutive cycles. The amide esterification mechanism has been studied on the Zr-MOF-808 at molecular level by in situ FTIR spectroscopic technique and kinetic study.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Abstract: More than 95% (in volume) of all of today’s chemical products are manufactured through catalytic processes, making research into more efficient catalytic materials a thrilling and very dynamic rese...

772 citations

Journal ArticleDOI
TL;DR: The conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems are discussed.
Abstract: Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.

441 citations

Journal ArticleDOI
TL;DR: In this article, a review describes recent advances in the fundamental understandings of the Propane Dehydrogenation (PDH) process in terms of emerging technologies, catalyst development and new chemistry in regulating the catalyst structures and inhibiting the catalyst deactivation.
Abstract: Propylene is an important building block for enormous petrochemicals including polypropylene, propylene oxide, acrylonitrile and so forth. Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. With the development of dehydrogenation technologies, the efficient adsorption/activation of propane and subsequential desorption of propylene on the surfaces of heterogeneous catalysts remain scientifically challenging. This review describes recent advances in the fundamental understandings of the PDH process in terms of emerging technologies, catalyst development and new chemistry in regulating the catalyst structures and inhibiting the catalyst deactivation. The active sites, reaction pathways and deactivation mechanisms of PDH over metals and metal oxides as well as their dependent factors are also analysed and discussed, which is expected to enable efficient catalyst design for minimizing the reaction barriers and controlling the selectivity towards propylene. The challenges and perspectives of PDH over heterogeneous catalysts are also proposed for further development.

222 citations

Journal ArticleDOI
TL;DR: In this article, recent advances in the area of biomass-derived C6-furanic platform chemicals for sustainable biomass processing are analyzed focusing on chemical reactions important for development of practical applications and materials science.
Abstract: Recent advances in the area of biomass-derived C6-furanic platform chemicals for sustainable biomass processing are analyzed focusing on chemical reactions important for development of practical applications and materials science. Among the chemical processes currently being studied, tuning the amount of oxygen-containing functional groups remains the most active research direction. Production of efficient fuels requires the removal of oxygen atoms (reduction reactions), whereas utilization of biomass-derived furanic derivatives in material science points out the importance of oxidation in order to form dicarboxylic derivatives. Stimulated by this driving force, oxidation and reduction of 5-(hydroxymethyl)furfural (HMF) are nowadays massively studied. Moreover, these fundamental transformations are often used as model reactions to test new catalysts, and HMF transformations guide the development of new catalytic systems. From the viewpoint of organic synthesis, highly diverse chemical reactivity is explor...

199 citations