scispace - formally typeset
Search or ask a question
Author

Settimio Ferlisi

Bio: Settimio Ferlisi is an academic researcher from University of Salerno. The author has contributed to research in topics: Landslide & Masonry. The author has an hindex of 17, co-authored 66 publications receiving 1457 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results.
Abstract: This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.

776 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship among in situ soil suction and rainfall conditions and induced slope instability types is discussed, with the goal to reach a better understanding of past events and gain further insight into the analysis and forecasting of future events.
Abstract: The shallow deposits of unsaturated pyroclastic soils covering the slopes in the Campania region (southern Italy) are systematically affected by various rainfall-induced slope instabilities. The type and triggering of these instabilities depend on several factors, among which in situ soil suction—as an initial condition—and rainfall—as a boundary condition—play a fundamental role. Based on the available database—which includes a comprehensive catalogue of historical data, in situ soil suction measurements and soil laboratory tests along with the results of geomechanical analyses—this paper discusses the relationships among in situ soil suction and rainfall conditions and induced slope instability types. The goal is to reach a better understanding of past events and gain further insight into the analysis and forecasting of future events. In particular, the paper outlines how the season strongly affects the spatial distribution and the type of slope instability likely to develop. For example, erosion phenomena essentially occur at the end of the dry season and originate hyperconcentrated flows while first-time shallow slides prevail in the rainy season and later propagate as debris flows or as debris avalanches.

103 citations

Journal ArticleDOI
TL;DR: In this paper, a two-scale (medium and large) procedure for vulnerability assessment of buildings located in areas affected by slow-moving landslides is presented, which leads to the generation, as an absolute novelty, of both empirical fragility and vulnerability curves for buildings in slow moving landslide-affected areas.
Abstract: Slow-moving landslides yearly induce huge economic losses worldwide in terms of damage to facilities and interruption of human activities. Within the landslide risk management framework, the consequence analysis is a key step entailing procedures mainly based on identifying and quantifying the exposed elements, defining an intensity criterion and assessing the expected losses. This paper presents a two-scale (medium and large) procedure for vulnerability assessment of buildings located in areas affected by slow-moving landslides. Their intensity derives from Differential Interferometric Synthetic Aperture Radar (DInSAR) satellite data analysis, which in the last decade proved to be capable of providing cost-effective long-term displacement archives. The analyses carried out on two study areas of southern Italy (one per each of the addressed scales) lead to the generation, as an absolute novelty, of both empirical fragility and vulnerability curves for buildings in slow-moving landslide-affected areas. These curves, once further validated, can be valuably used as tools for consequence forecasting purposes and, more in general, for planning the most suitable slow-moving landslide risk mitigation strategies.

89 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-scale procedure tailored to analyze the settlement-induced building damage is presented, where the role of soft soils in predisposing the occurrence of ground surface settlements is first investigated.

70 citations

Journal ArticleDOI
TL;DR: In this article, DInSAR data are first analyzed via an innovative approach aimed at enhancing both the exploitation and interpretation of remote sensing information; then, they are complemented with the results of an accurate analysis of survey-recorded damage to facilities due to slow-moving landslides.
Abstract: Testing innovative procedures and techniques to update landslide inventory maps is a timely topic widely discussed in the scientific literature In this regard remote sensing techniques – such as the Synthetic Aperture Radar Differential Interferometry (DInSAR) – can provide a valuable contribution to studies concerning slow-moving landslides in different geological contexts all over the world In this paper, DInSAR data are firstly analysed via an innovative approach aimed at enhancing both the exploitation and the interpretation of remote sensing information; then, they are complemented with the results of an accurate analysis of survey-recorded damage to facilities due to slow-moving landslides In particular, after being separately analysed to provide independent landslide movement indicators, the two datasets are combined in a DInSAR-Damage matrix which can be used to update the state of activity of slow-moving landslides Moreover, together with the information provided by geomorphological maps, the two datasets are proven to be useful in detecting unmapped phenomena The potentialities of the adopted procedure are tested in an area of southern Italy where slow-moving landslides are widespread and accurately mapped by using geomorphological criteria

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results.
Abstract: This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.

776 citations

01 Jan 2016
TL;DR: An introduction to discourse analysis theory and method is available in the authors' digital library an online access to it is set as public so you can download it instantly.
Abstract: an introduction to discourse analysis theory and method is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the an introduction to discourse analysis theory and method is universally compatible with any devices to read.

513 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze how earthquakes trigger landslides and highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface, highlighting research gaps.
Abstract: Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.

424 citations